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Some of the Carbon world in 2014



Forest Biomass Maps MCTI, TCN, 2016.



Transect: 3,75 km2 

Total area: 3.750 km2

Randomly distributed considering : 
- PRODES mask
- TerraClass
- Flooded areas



AGB (Mg/ha)

Uncertainty Map (Mg/ha)



Parcelas de Campo 

• Calcula a AGB das parcelas 
de campo – equações 
alométricas

• Extrai do LiDAR as métricas 
de altura do Topo da 
Vegetação – das mesmas 
áreas das parcelas

LiDAR 50 m LiDAR 250 m

• AGB e incerteza de 50 m
são reamostradas para
250 m (compatível com
os dados de satélite).

• Resultado: AGB e
incerteza de 250 m para
todos os pixels de dados
LiDAR

AGB\Incerteza 250 m

• Para a Amazônia: 
modelo Random Forest 
prever AGB a partir de 
camadas de satélite 
(índices de veg., terreno, 
precipitação)

• O modelo gera AGB para 
todos os pixels (inclusive 
onde não temos LiDAR)

Nível 1 Nível 2 Nível 3

• Ajusta um modelo: 

LiDAR x Campo

Longo et al. 2016

Mapa de Incertezas

AGB\Incerteza 250 m
Reamostrado 50 m

Reamostrado 250 m



National Communication to the Climate 
Convention and as support for the Forest 
Reference Level (FREL)

Outras Análises



AGCarbon EBA considering the average
content from vegetation classes

AGCarbon EBA considering the Percentil 75 
content from vegetation classes

Áreas antropizadas até 2016 



A few other contributions

[…] 
Science 382, 103–109 (2023) 



Potential map generated by the random forest spatial model to 
define ideal zones for the occurrence of high density of giant 
trees in the Amazon. 

DOI: 10.1111/nph.70634 

Resolution Tree Height Mapping of the1 Amazon forest using Planet NICFI and2 LiDAR-
Informed U-Net Model3

Wagner et al (Remote Sensing in Ecology and Conservation)

model successfully estimated canopy heights up to 40–50 m without much saturation, 
outperforming existing canopy height products from global models in this region. We 
determined that the Amazon forest has an average canopy height of∼22 m.
Events such as logging or deforestation could be detected from changes in tree height, 
and encouraging results were obtained to monitor the height of regenerating forests.



Small persistent humid forest clearings drive tropical
forest biomass losses
Xu et al (in review)

Beyond forest height and biomass: characterizing the vertical structure of 
forests in the Brazilian Amazon
Valle et al (in review)

[…] secondary forests fully recover or even exceed reference areas at the 1-
10 m height stratum after 5 to 10 years but that full recovery for the 20-30 
m height stratum has not been achieved even after 35 years

A few other contributions (in review)

The Global Canopy Atlas: analysis-ready maps of 3D structure
for the world’s woody ecosystems
Fischer et all (in review)

[…] Global Canopy Atlas (GCA): 3,458 ALS acquisitions transformed into 
standardized and analysis-ready maps of canopy height and elevation at 1 
m2 resolution. The GCA covers 56,554 km2 across all major biomes.

Fire in a Central Amazon forest: Lingering top canopy loss and initial understory 
regrowth revealed by repeated LiDAR
Pontes-Lopes et al (in review)

[… results revealed initial incipient recovery occurring simultaneously to delayed 
large tree mortality—where a prior field study did not because of sample scale 
dependent detection—highlighting pervasive impacts of fire that may contribute 
to a greater sensitivity of rainforests to climate change.”

[…] 



Alto Xingu Guaporé



Obrigado
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of Forests Across Successional Stages
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Estimation of Aboveground Biomass in Old-
Growth Forests and Classification of Forests 

Across Successional Stages



Estimation: 1,053 species account for half of the planet's 800 billion tropical forest trees. The other half are comprised of 46,000 
tree species. The number of rare species is extreme, with the rarest 39,500 species accounting for just 10% of trees (Slik et al 2015).



https://www.bbc.co.uk/news/science-environment-51300515

Deforestation/
Clear Cut

A degraded forest is the result of a process of 
degradation which negatively affects the structural 

and functional characteristics of that forest



One of the main question in Earth Sciences Above Ground Biomass





Estimated biomass from geomorphometric variables:

BM = –19,67 + 1,3467 h + 3,053 G    
r2=0,58, p=0,000
error= 45,80 Mg/ha
(22% from biomass mean)

Estimated biomass from composite model:

BM = 31,11 + 142,01 Pv – 598,3 An + 1,465 h + 3,35 G + 0,4288 τ_m3 –
9,478 τ_m1

r2=0,74, p=0,000
erro= 33.15 Mg/ha
(15% from biomass mean)

Estimated biomass from polarimetric variables (SAR):

BM = – 191,8 – 10,595 τ_m1 – 11,562 α_s1 + 634,6 H – 463,9 An

r2=0,35, p=0,004
error=54,32 Mg/ha
(26% from biomass mean)

Modeling of forest biomass

τ_m1: first component of the Touzi helicity; α_s1: 
first component of the Touzi magnitude; H: 
entropy; An: anisotropy;

h: elevation; G: slope



Estimated biomass from composite model:

BM = 31,11 + 142,01 Pv – 598,3 An + 1,465 h + 3,35 G + 0,4288 τ_m3 – 9,478 τ_m1

r2=0,74, p=0,000
erro= 33.15 Mg/ha
(15% from biomass mean)

BM: Biomass; Pv: Volumetric Scaterring Freeman; An: Anisotropy; h: Altitude; G:
Slope; τ_m3: Third Component of Touzi Helicity; τ_m1: First Component of Touzi
Helicity



The validation of  was conducted 
utilizing the biomass values of 10 
independent samples from the 56. The 
mean biomass value of these 10 
parcels was 210.68 ± 40.09 Mg/ha. 
The RMSE was approximately 42.96 
Mg/ha. Comparing the values derived
from the model and those measured in 
the field (graph on the left), there
is a mean error of 20.31%, a value 
considered adequate for
biomass inventory estimation 
conducted by traditional methods
that employ allometric equations.



Santoro, et al. 2021, Earth System Science Data  https://doi.org/10.5194/essd-13-3927-2021

https://doi.org/10.5194/essd-13-3927-2021


One of the main question in Earth Sciences 

Woody aboveground biomass mapping of the 
Brazilian savanna (Cerrado) with a multi-sensor 

and machine learning approach

Bispo, et al. 2020, Remote Sensing https://doi.org/10.3390/rs12172685

The Brazilian Savanna, known as Cerrado
(Cerrado sensu lato (s.l.)), is the second largest
biome in South America.

https://doi.org/10.3390/rs12172685


One of the main question in Earth Sciences 

Bispo, et al. 2020, Remote Sensing https://doi.org/10.3390/rs12172685

• The Cerrado Biome comprises different physiognomies due to variations of soil, topography and human impacts.

• The gradients of tree density, tree height, above ground biomass (AGB) and wood species cover vary according to the
Cerrado formation, ranging from different grassland formations (Campo limpo), savannah intermediary formations
(Campo sujo, Campo cerrado, and Cerrado sensu stricto - s.s) and forest formations (Cerradão).

https://doi.org/10.3390/rs12172685


Study 
site

Bispo, et al. 2020, Remote Sensing https://doi.org/10.3390/rs12172685

29

https://doi.org/10.3390/rs12172685


Floristic and structural characterisation of the plots located in fragments of native Cerrado 
vegetation in the Rio Vermelho watershed, Goiás State, Brazil. WS-FS = savanna-cerradão 
transition zone, TFS = cerradão, FS-SF = cerradão-seasonal forest transition zone; S = 
species richness, DBH =diameter at breast height.

WS-FS

TFS

FS-SF

Bispo, et al. 2020, Remote Sensing https://doi.org/10.3390/rs12172685

30

https://doi.org/10.3390/rs12172685
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Variable importance analysis

32



Cross-validation 

Cross-validation between the AGB map predictions and AGB reference data derived from the LiDAR point clouds. The black dash line 
corresponds to the y = x line.

Bispo, et al. 2020, Remote Sensing https://doi.org/10.3390/rs12172685

33

https://doi.org/10.3390/rs12172685


AGB Uncertainty 



AGB maps over part of the Rio Vermelho watershed, Goiás State, Brazil, produced by this study (30 m) (A) and by 
Santoro et al. 2018 (100 m) (B); Baccini et al. 2012 (500m ) (C); Avitable et al. 2016 (1 km) (D); and Saatchi et al. 2011(1 km) (E).

35



Conclusion
• One of is the most accurate AGB map (R2 = 0.89%, RMSE = 7.58 Mg/ha) over the Brazilian 

Savannah

• The AGB map showed similar performance for the different vegetation types in Rio Vermelho 
watershed

• Our methodology characterises the spatial distribution of aboveground biomass over Brazilian 
Cerrado using two stage estimates: from the field to LiDAR, and LIDAR to EO data in order to 
upscale the AGB estimations

• The method was applied later on over the whole Brazilian Cerrado biome

• Our results represent an important contribution as a method to monitoring the carbon emissions 
in Brazilian Cerrado within the framework of REDD+ under the United Nations Framework 
Convention on Climate Change

36



Aboveground woody biomass (AGWB, in t.ha-1) maps at 30-m resolution for the Cerrado biome, based on two machine learning algorithms 
tested (CART, left panel, and RFRandom Forest, right panel). Predictions are mapped over the native vegetation pixels, classified by the 
MapBiomas Project Collection 5.0 (forest, savanna, and grasslands). 
Zimbres, et al. 2021, Forest Ecology and Management,  https://doi.org/10.1016/j.foreco.2021.119615

Mapping the stock and spatial distribution of aboveground woody 
biomass in the native vegetation of the Brazilian Cerrado biome

37

https://doi.org/10.1016/j.foreco.2021.119615


AGB Colombian Amazon

Aboveground biomass and multisensory approach



Forest in different successional stages



Forest in different successional stages























One of the main question in Earth Sciences 

• Our results suggest that the approach described here allows to monitor the successional forest 
stages

• More investigations are needed to confirm these capabilities in different tropical forest test sites, 
and to further assess the robustness of the methodology. 

• The availability of an external (LiDAR) DTM, which often is not the case in other tropical regions, 
limits the use of this approach with TanDEM-X data and the coverage of the resulting classification 
maps. 

Conclusions



https://www.amazoniamaisdez.org.br/en/iniciativa



“Amazon +10 Initiative: Research Expeditions to the Amazon” The project involves the funding agencies UKRI (UK), SNSF (Switzerland), FAPESP (Brazil),
FAPESPA (Brazil), FAPEAM (Brazil), FAPERR (Brazil), and CNPq (Brazil). More than 40 scientists and 10 Quilombola leaders (Project started in Feb 2025)
Total funding: £1,972,651.43 ~ €2,320,503.31 ~R$14,862,722.69

Amazonian BioTechQuilombo - Amazonian Biodiversity, 
Technology Assessment, and Knowledge Exchange with 

Quilombos



O mapa apresenta as áreas previstas para expedições 
de campo. As coletas de dados serão realizadas em 
comunidades quilombolas da Amazônia, entre os anos 
de 2026 e 2028. Fonte: BiotechQuilombo/ TERAQ-G 
projects.

PP0106231 - BioMassQuilombo-Amazon: Participatory 
Calibration and Validation of ESA BIOMASS SAR



One of the main question in Earth Sciences 
• BioTechQuilombo: Pioneering Community-

Led Biodiversity Monitoring in the Amazon
https://www.manchester.ac.uk/about/news/biotech
quilombo-pioneering-community-led-biodiversity-
monitoring-in-the-amazon/

• Initiative brings together quilombola
knowledge and technology for the benefit
of biodiversity

https://ipam.org.br/initiative-brings-together-
quilombola-knowledge-and-technology-for-the-
benefit-of-biodiversity/

• Amazonia +10 Initiative
https://www.amazoniamaisdez.org.br/en/iniciativa

Links

https://www.instagram.com/projetobiotechquilombo/

https://www.manchester.ac.uk/about/news/biotechquilombo-pioneering-community-led-biodiversity-monitoring-in-the-amazon/
https://ipam.org.br/initiative-brings-together-quilombola-knowledge-and-technology-for-the-benefit-of-biodiversity/
https://www.amazoniamaisdez.org.br/en/iniciativa


One of the main question in Earth Sciences 

• Persistent uncertainties in biomass estimation and in detecting biomass changes over time.

• Inconsistent classification of secondary forests.

• Limited understanding of vegetation recovery dynamics under different disturbance regimes—both 
anthropogenic and natural—and how these affect forest regrowth and resilience.

• The need to standardize and harmonize datasets—including field measurements, LiDAR, and 
satellite imagery—to ensure long-term comparability, consistency, and interoperability across 
spatial and temporal scales.

• Lack of field plots specifically designed to validate remote sensing data and capture the 
complexity of tropical forest regeneration processes.

Some challenges



One of the main question in Earth Sciences 
• Integrate other variables such as: microclimate, geomorphometric variables (e.g., slope, elevation, 

curvature, topographic position index) to capture terrain-driven variations influencing vegetation 
patterns

• Incorporate structural metrics such as canopy height, canopy density, and vertical complexity 
derived from LiDAR or radar data.

• Use contextual variables (e.g., proximity to mature forest, land-use history, disturbance type and 
frequency, trends) to better characterize regeneration environments.

• Analyse temporal trends in spectral and structural indicators to distinguish stages of forest 
recovery and succession dynamics.

• Combine field data (forest inventory) multisource remote sensing data (optical, radar, LiDAR) to 
enhance separability between successional stages.

• Apply machine learning or deep learning approaches to integrate diverse features and improve 
classification accuracy.

• Validate classifications using well-designed field plots representing different successional stages 
and disturbance histories.

Future investigations  



Thank you!
Dr. Polyanna da Conceição Bispo

Senior Lecturer in Physical Geography
Department of Geography, University of Manchester

Email: polyanna.bispo@manchester.ac.uk

Twitter:@polybispo
Twitter: @rsategroup

Linkedin: Polyanna Bispo
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Synthesis of regrowth rates in secondary forests



Regrowth rates from different sources
• ESA CCI Biomass regrowth rates 

⚬ slope from time series maps

⚬ overlaid with MapBiomas Age

• INPE-ALS space-for-time approach

Literature
• Heinrich et al. 2021 

⚬ CCI Biomass v3 space-for-time

• Holcomb et al. 2023* 
⚬ GEDI space-for-time

*different forest age map

• Robinson et al. 2025 
⚬ based on field estimates and modeling

Regions for estimating regrowth rates
(Heinrich et al. 2021)

12



Regrowth rates from ESA CCI Biomass

13



Regrowth rates from INPE-ALS

13



Regrowth rates from different sources

13

Regions for estimating regrowth rates
(Heinrich et al. 2021)

ESA CCI Biomass (10 annual maps)
INPE ALS-AGB (2016)
Heinrich et al. 2021 
Holcomb et al. 2023
Robinson et al. 2025



Summary

13

• ESA CCI Biomass time-series products allow the estimation of regrowth rates for individual 

secondary forest age classes

• Regrowth rates from INPE-ALS show a similar pattern to the CCI in the Eastern Brazilian Amazon, 

with the highest rates at around 10-20 years

• Since INPE-ALS represents sampled AGB, its estimated regrowth rates are influenced by the 

MapBiomas product and its definition of secondary forest

• Robinson et al. 2025 report relatively little variation in regrowth rates across the age classes
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First results from the ESA BIOMASS Mission
in Brazilian Forests

work conducted under ESA BIOMASS DISC
as part of the BIOMASS In-Orbit Commissioning Programme



The BIOMASS mission: ESA‘s forest mission

13

source: esa.int

Primary science objectives



7

Signature analysis of BIOMASS L1B amplitude (commissioning data)
across secondary forests and their ages



10

work conducted under ESA BIOMASS DISC
as part of the BIOMASS In-Orbit Commissioning Programme

Summary



10
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Temporal trajectories of biomass in 
Brazil from the ESA CCI Biomass 
dataset
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EO-based forest carbon removals and 
emissions in Amazon



EO-based forest carbon removals and 
emissions in Amazon

Yidi Xu, Liang Wan, Philippe Ciais

Laboratory for Climate and Environmental Sciences, France
2025.10.29

80
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Background

Amazon: globally important carbon stocks

C sink? C sources ? 

Rosan et al., 2024
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Background

Regional response curves 
used in BK models

Sparse Inventory plot in tropics

Bottom-up BK model DGVM simulation

Rosan et al., 2024



83

Background

Satellite approach

(Schwarz et al., 2025)

Small size disturbance Satellite-based regrowth curve Yearly CH growth of French forest

1) Improve the BK model with spatially-explicit regrowth curves
2) Annual canopy height and biomass mapping



• Tropical disturbances + ESA CCI Biomass + space-for-time   (1990-2020)
• Spatially-explicit BK model performs better than the model based on a continental-average curve 

84

• Xu et al., in review

1. Gain-loss method:  A spatially-explicit BK model



85

1. Gain-loss method:  A spatially-explicit BK model

Outperforms the continental curves 

Ours modeled AGC for disturbed pixels                                                                    Independent Lidar based Biomass (Ometto et al) 

The Spatially-explicit BK model can reproduce 
the biomass for disturbed forests following 
different disturbances

• Xu et al., in review



86

1. Gain-loss method:  A spatially-explicit BK model

Carbon budgets from 1990-2020:
Biogeographical Amazon
Gross gain: 1.4 Pg C ; Gross loss: −6.2 Pg C ;Net: -4.9 Pg C (161.8 TgC/yr)

• Xu et al., in review



Mapping framework for forest height and biomass mapping from 2019-2022

High-resolution mapping of forest height and biomass

Validation of canopy height (10 m) and biomass (30 m) maps

2. High-resolution mapping of forest height and biomass

Wan et al., in preparation
Mapping framework 



Mapping of height changes in Amazon rainforestsHeight changes mapping and the comparison with other products

Our Height change maps (10m) TMF disturbance 

Wan et al., in preparation

New height change map (10 m) from 2019 to 2022



Mapping of height changes in Amazon rainforestsHeight changes mapping and the comparison with other products

Mato Grosso
Our Height change maps (10m) CTREE tree cover product

5-m（Wagner et al. 2023)

CTREE planet-based disturbance (Dalagnol et al., 2023)Wan et al., in preparation

Fire                                              Logging



Our CH change is consistent with GEDI RH100 change but can detect more 
small disturbances than Landsat disturbance data

Evaluation: GEDI RH100, Landsat TMF disturbance, GFC tree cover loss, and radar alter

Evaluation of the canopy height change maps

Wan et al., in preparation
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Method: 
• Overlap TMF plantation/Afforestation(new growth) /regrowth from deforestation (other regrowth)
• AGC rate: CH change and the allometry function.

Regrowth rates based on the annual AGC estimation

Wan et al., in preparation

Growth rate from plantation if higher than the natural regenerated forest
AGC Recovery rate from fire is lower than the regrowth from deforestation 



Method: 
• Combine height change and  Landsat data to classify C loss and gain from degradation, 

deforestation, Regrowth, Other (undisturbed forests).
• AGC map and change maps : CH map + allometry function.

Direct estimation of AGB change 

Wan et al., in preparation

Carbon budgets from 2019 to 2022:
Gross gain: 179.8 ± 16.4 Tg C/y ; Gross loss: −436.6 ± 33.3 Tg C/y ;Net: −256.7 ± 37.1 Tg C/y



Summary

• Our EO-based approach 
• Provide the spatially-explicit bk model with outperforms the previous BK 

model by intergrating regional response curves
• Offering new insights into fine-scale (10m) carbon dynamics overlooked

by moderate 30m satellite products

93

Very preliminary!!!!

Direct AGC mapping
2019-2022

Next step: Synthesis of the different satellite approach

BK model 
(2011-2020) 

L-VOD AGC 
Fendrich 2025

All forestAll forest TMF Disturbed forest only



Thanks!

Yidi.xu@lsce.ipsl.fr
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Mapping Cecropia distribution to adjust 
biomass estimates in the Amazon
[RECCAP2-CS]



Harness satellite based ECV to make a giant leap for
reducing the uncertainty on the emissions and sinks of CO2, 

and CH4 over key land regions, and attributing them to 
anthropogenic and global change drivers

Mapping key species to improve wood density and biomass mapping



Existing AGB/ CH estimates
Recent advancements

‹2› 

Wagner et al. (2025)
5m Canopy Height 

U-Net
Planet + airbourne LiDAR

• Trained on LiDAR using 
optical/ SAR through deep 
learning

• Canopy height spatial 
resolutions 1-30 m

• Small disturbances captured

𝐴𝐺𝐵 = 𝑓(𝐶𝐻 ∙ 𝑊𝐷)

Inconsistent
specificity

Sullivan et al. (2025)
1 km wood denisty

GAM

Qi et al. (2025)
25 m Canopy Height
TanDEM-X + GEDI



Estimating wood density

‹3› Zalamea et al (2012)

• Pioneer genus

• Low wood density

• Indicator of disturbance

• +ve AGB bias in disturbed regions

Via Cecropia

Abundance

Wagner et al (2019)
0.3 m spatial resolution 4 band WV-3



Estimating wood density and AGB
Simplified workflow

‹4› 



Cecropia Identification
WorldView-3 data (ESA 3rd Part Mission)

‹5› 

Objective: Cover environmental gradients across Amazonia 
disturbance, climatic + edaphic

Total area = 450 km2 (18 sites)

In 2020

Off nadir < 25°

GABAM (Fq.+ timings)

MapBiomas

MapBiomas



Cecropia Identification
WorldView-3 data 
(ESA 3rd Part Mission)

‹6› 



Cecropia Identification
U-Net modelling

‹7› 

700 crown delineated
Manual delineation of 

Cecropia

70-30 (train-valid.) 
split

1,200 patches

• Changing domains hinders performance i.e., 
shadowing and ρ()

• Heavy training augmentation applied

• Down sampled scene (5x5 km) subnetwork 
embedded  at bottleneck describing global 
variability (automatic correction)



Cecropia Identification
U-Net modelling

‹8› 

Validation dice coefficient = 0.638 
(epoch 237)

Good but still unsatisfactory…



‹9› 

Disturbance gradients (30m) 
Cecropia Predictions

Poorter et al (2023)

Successional dynamics of 
pioneer functional species 

observed though Cecropia…



Expanding Cecropia predictions
Cecropia density (Amazon)

‹10› 

10 m Cecropia density
(aggregated U-Net output)

18 scenes of 25 km2

Train + validate NN/DL model
18 scenes of 25 km2

Application across the Amazon
10 m annual maps 2017 – 2025 

6.7 Mkm2

WV-3 
predictions

Sentinel-1/2 
predictions

…



Estimating wood density

‹11› 

Community composition

“Vismia, Bellucia, Miconia and Cecropia, comprised 90% of the 
emerging seedlings that established”

Bentos et al. (2017)

Sande et al. (2023)



Estimating AGB
Final product specification and utility

‹12› 

𝐴𝐺𝐵 = 𝑓(𝐶𝐻 ∙ 𝑊𝐷)

Consistent
specificity

• New annual 10 m wood density and 
AGB maps between 2017-2025

• Insight into community composition 
at ecosystem scale

• Successional dynamics from 
disturbance explicitly incorporated 
into earth observation C stocks



‹13› 

Thank you for listening!

Scott Barningham
sdb221@exeter.ac.uk

Special thanks to:
Stephen Sitch
Lina Mercado
Luiz Aragão 
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Isadora Haddad

Fire triples the recovery time of carbon 
stocks in easter Amazonian secondary 
forests
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Landscape Analysis of Brazilian Forest 
Regeneration: A Novel National 
Database of Secondary Vegetation
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Objectives

Recover of 12 million hectares of 
native vegetation by 2030

National Vegetation 
Recovery Plan

Commitment at COP15 to restore at least 30% of
degraded areas of terrestrial, inland, coastal and
marine ecosystems

Kunming-Montreal Global 
Biodiversity Framework
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Objectives
National Vegetation Recovery Plan

Guidelines:

(III) …consolidation of spatial intelligence and a monitoring system

that qualifies decision-making processes and publicizes progress in

achieving the goal and the final impacts resulting from monitoring

these goals.

STRATEGIES

RECOVERY 
PRODUCTION 

CHAIN

SPATIAL 
INTELLIGENCE 

AND MONITORING

RECOVERY 
FINANCING

RESEARCH, 
DEVELOPMENT 

AND INNOVATION
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Objectives
National Vegetation Recovery Plan

Guidelines:

(III) …consolidation of spatial intelligence and a monitoring system

that qualifies decision-making processes and publicizes progress in

achieving the goal and the final impacts resulting from monitoring

these goals.

STRATEGIES

RECOVERY 
PRODUCTION 

CHAIN

SPATIAL 
INTELLIGENCE 

AND MONITORING

RECOVERY 
FINANCING

RESEARCH, 
DEVELOPMENT 

AND INNOVATION
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Objectives
National Vegetation Recovery Plan

To improve the understanding of the dynamics of SV areas in

Brazil
• Persistence
• Connectivity
• Land tenure category

STRATEGIES

RECOVERY 
PRODUCTION 

CHAIN

SPATIAL 
INTELLIGENCE 

AND MONITORING

RECOVERY 
FINANCING

RESEARCH, 
DEVELOPMENT 

AND INNOVATION
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Secondary Vegetation

“Areas that have been 
deforested and are in an 
advanced stage of 
regeneration, with the 
presence of trees and shrubs.”

Definitions
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Data Source
Data base for qualification

• Mapped each 2 years

Amazon
2008 2022



6

Data Source
Data base for qualification

2024
Cerrado

2018

Amazon
2008 2022
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Data Source
Data base for qualification

2022

Atlantic Forest, Caatinga, Pantanal 
and Pampa

2018
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Data Source
Land Tenure

FUNAI, ICMBio and INCRA

• Indigenous Land
• Integral Protection Conservation Units
• Sustainable Use Conservation Units (excluding APA);
• Quilombola Territories
• Rural Settlements
• Environmental Protection Areas (APA)
• Private Properties
• Undesignated Public Forests
• Areas without Land Registration
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Landscape Ecology
Methodology

Landscape Metrics:

• Area (ha)
• Core area (ha) – 30, 60, 90 e 120 m
• Fractal dimension index
• Euclidean distance to the nearest neighbor (m)
• Type of nearest neighboring vegetation
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Landscape Ecology
Methodology

• Weighted age (years)

• Area (ha) of the fragment 
according to land tenure 
parcels in the region

Landscape Metrics:

• Area (ha)
• Core area (ha) – 30, 60, 90 e 120 m
• Fractal dimension index
• Euclidean distance to the nearest neighbor (m)
• Type of nearest neighboring vegetation
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Area (ha)
Total area

0% 20% 40% 60% 80% 100%

Pampa

Pantanal

Caatinga

Atlantic Forest

Cerrado

Amazon

2 —| 5 
5 —| 20 
20 —| 50 
50 —| 100 
100 —| 1000 
> 1000 

16.2M ha
7.6M ha
1.6M ha

4M ha
119K ha
28K ha
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Area (ha)
Total area

0% 20% 40% 60% 80% 100%

Pampa

Pantanal

Caatinga

Atlantic Forest

Cerrado

Amazon

2 —| 5 
5 —| 20 
20 —| 50 
50 —| 100 
100 —| 1000 
> 1000 

16.2M ha
7.6M ha
1.6M ha

4M ha
119K ha
28K ha

29,5M ha of SV Brazil
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Area (ha)
Total area

0% 20% 40% 60% 80% 100%

Pampa

Pantanal

Caatinga

Atlantic Forest

Cerrado

Amazon

2 —| 5 
5 —| 20 
20 —| 50 
50 —| 100 
100 —| 1000 
> 1000 

5 ─| 20  → ~ 30 - 40%
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Area (ha)
Total area

0% 20% 40% 60% 80% 100%

Pampa

Pantanal

Caatinga

Atlantic Forest

Cerrado

Amazon

2 —| 5 
5 —| 20 
20 —| 50 
50 —| 100 
100 —| 1000 
> 1000 

100 ─| 1000  → ~ 30 - 40%



16,2M 15,2M 13,7M 12,2M
7,4M 6,2M 5,1M 4,3M
4M 3,7M

3M
2,4M

1,6M 1,4M
942K

608K

28K 23K
16K

13K

119K 115K 107K 99K

10,000

100,000

1,000,000

10,000,000

30 60 90 120

Co
re

 a
re

a
(h

a)

Edge distance (m)

Amazon

Cerrado

Caatinga

Atlantic
Forest

Pampa

Pantanal

13

Core area (ha)
Results by edge distance
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Core area (ha)
Loss along edge 

distance

-25%

-42%

-40%

-62%

-17%

-54%

16,2M 15,2M 13,7M 12,2M
7,4M 6,2M 5,1M 4,3M
4M 3,7M

3M
2,4M

1,6M 1,4M
942K

608K

28K 23K
16K

13K

119K 115K 107K 99K

10,000

100,000

1,000,000

10,000,000

30 60 90 120

Co
re

 a
re

a
(h

a)

Edge distance (m)

Amazon

Cerrado

Caatinga

Atlantic
Forest

Pampa

Pantanal
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Core area (ha)
Loss along edge 

distance

-25%

-42%

-40%

-62%

-17%

-54%

16,2M 15,2M 13,7M 12,2M
7,4M 6,2M 5,1M 4,3M
4M 3,7M

3M
2,4M

1,6M 1,4M
942K

608K

28K 23K
16K

13K

119K 115K 107K 99K

10,000

100,000

1,000,000

10,000,000

30 60 90 120

Co
re

 a
re

a
(h

a)

Edge distance (m)

Amazon

Cerrado

Caatinga

Atlantic
Forest

Pampa

Pantanal
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4,3M

2,4M

608K

13K

99K

10,000

100,000

1,000,000

10,000,000

120

Co
re

 a
re

a
(h

a)

Edge distance (m)

Amazon

Cerrado

Caatinga

Atlantic Forest

Pampa

Pantanal 16

Core area (ha)
Proportion by biome75%

57%

59%

38%

84%

46%
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4,3M

2,4M

608K

13K

99K
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1,000,000

10,000,000

120
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a)

Edge distance (m)

Amazon

Cerrado

Caatinga

Atlantic Forest

Pampa

Pantanal 17

Core area (ha)
Proportion by biome75%

57%

59%

38%

84%

46%



12,2M

4,3M

2,4M

608K

13K

99K

10,000

100,000

1,000,000

10,000,000

120

Co
re

 a
re

a
(h

a)

Edge distance (m)

Amazon

Cerrado

Caatinga

Atlantic Forest

Pampa

Pantanal 18

Core area (ha)
Proportion by biome75%

57%

59%

38%

84%

46%

Smaller proportions
= 

Smaller fragments
=

Greater edge effect*
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Fractal dimension index
Results

1,18

1,45

1,30

0% 50% 100%

Pampa
Pantanal
Caatinga

Atlantic Forest
Cerrado
Amazon

1 —| 1,25
1,25 —| 1,5
1,5 —| 1,75
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Distance to the nearest neighbor (m)
Results

0% 20% 40% 60% 80% 100%

Pampa
Pantanal
Caatinga

Atlantic Forest
Cerrado
Amazon

0 —| 30 m​
30 —| 60 m​
60 —| 90 m​
90 —| 120 m​
120 —| 500 m​
> 500 m​



0% 20% 40% 60% 80% 100%

Pampa
Pantanal
Caatinga

Atlantic Forest
Cerrado
Amazon

0 —| 30 m​
30 —| 60 m​
60 —| 90 m​
90 —| 120 m​
120 —| 500 m​
> 500 m​

21

Distance to the nearest neighbor (m)
Results

~ 35% of the area
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Type of nearest neighboring vegetation
Results

93%
96%

98%
95%

90%
85%

70% 75% 80% 85% 90% 95% 100%

Pampa

Pantanal

Caatinga

Atlantic Forest

Cerrado

Amazon

Vegetação Primária

Vegetação Secundária

Primary Vegetation
Secondary Vegetation
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Land Tenure
Results

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Pampa

Pantanal

Caatinga

Atlantic Forest

Cerrado

Amazon

Area without Land Registration Undesignated Public Forests
Private Properties APA
Rural Settlements Quilombola Territories
Indigenous Land Integral Protection UC
UC Sustainable Use (excluding APA)
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Land Tenure
Results

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Pampa

Pantanal

Caatinga

Atlantic Forest

Cerrado

Amazon

Area without Land Registration Undesignated Public Forests
Private Properties APA
Rural Settlements Quilombola Territories
Indigenous Land Integral Protection UC
UC Sustainable Use (excluding APA)
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Land Tenure
Results

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Pampa

Pantanal

Caatinga

Atlantic Forest

Cerrado

Amazon

Area without Land Registration Undesignated Public Forests
Private Properties APA
Rural Settlements Quilombola Territories
Indigenous Land Integral Protection UC
UC Sustainable Use (excluding APA)

/
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Age
Results

0% 20% 40% 60% 80% 100%

1 ─ 3 4 ─ 6 7 ─ 9 10 ─ 12 13 ─ 14

Amazon
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Age
Results

0% 20% 40% 60% 80% 100%

Pampa

Pantanal

Caatinga

Atlantic Forest

Cerrado

1 2 3 4

Cerrado
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Atlantic Forest Caatinga
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Pampa Pantanal
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Thank you!

Obrigada!



São José dos Campos, 30 Oct 2025

Session 2.2: Other metrics for identifying secondary forest success
Lais Oliveira

Forest regeneration and the climate 
regulation ecosystem service in the 
Amazon
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Contextualization
Biogeochemical and biogeophysical process

LULC 
changes

Biogeophysical

Biogeochemical
Greenhouse gases
Aerosols
Pollutants

Heat fluxes
Water fluxes
Wind (direction and magnitude)

Climate stability
Ability of forests to regulate climate

LULC 
changes Process
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Contextualization
Climate regulation → Energy and water balance

Zhang et al., (2023)

• Different Land covers → different fluxes

• Soybean and Pastures:

Moisture and latent heat

Sensible heat
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Main question
Can secondary forests (SF) regulate local climate with the same 

potential as primary forests (PF)?

Secondary forests

Zhang et al., (2023)
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Study area

Central Brazilian Amazon (CBA)
Eastern Brazilian Amazon(EBA)
Southern Brazilian Amazon (SBA) 

Pires & Costa (2013)Adapted of Souza Jr. et al., (2023)

Different patterns
Land use change Bioclimatic regions

Remains in forest bioclimatic equilibrium
Tendency to bioclimatic seasonalization
Bioclimatic savannization
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What we are developing
Analysis

InferencialDescriptive Precipitation
Evapotranspiration

Land surface temperature

Early
Intermediary
Advanced

Variables

X

Primary

Fracional forest cover

Secondary

Understand 
the behavior
of observed 
data

Test the 
consistency and 
significance of 
empirically 
observed 
relationships
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Our discovers
Observed data - Precipitation
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Our discovers
Observed data - Precipitation

• Precipitation in SF early is lower than in PF
• Precipitation in SF intermediary is lower than in

PF in some forest fractional cover ranges
• Precipitation in SF advanced not statistically

different of PF

The ability of SF to regulate climate like 
PF increases with both fractional cover 
and successional stage advancement
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Our discovers
Observed data - Precipitation

• Precipitation in SF early and SF
intermediary is lower than in PF in all forest
fractional cover ranges

• Precipitation in SF advanced not statistically
different of PF in same ranges

Even in the intermediary stage, SF still 
cannot reach the climate regulation 

potential of PF
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Our discovers
Observed data - Precipitation

• Regardless of the successional stage of SF
and fractional forest cover range,
precipitation in the SF is statistically lower
than in the PF.

SF still cannot reach the climate 
regulation potential of PF
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Concluding remarks
• We adopted simple approaches to explore how climate responds to

forest cover and successional stage.
• These methods are a first step toward understand processes that are

still not well known in the Amazon.
• Results show that secondary forests help regulate climate, but their

potential is not yet fully recovered.
• There is still much to learn about how forest regeneration affects local

and regional climate.
• Future studies should improve and expand these approaches to better

capture the complexity of climate–forest interactions.
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For reflection

There has never been a more urgent 
need to revive damaged 
ecosystems than now.
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Thank you for your attention!

lais.rosa@ufv.br



Secondary Forests growth 
with  NISAR

Sassan Saatchi
Science Team Member

Jet Propulsion Laboratory
California Institute of Technology

CEO, CTREES
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1
6
0

Volcanoes

NISAR Ecosystem Science



161

NISAR Ecosystem Science

Dense-time series of dual-polarized L-band & S-band data

Biomass: Annually map aboveground woody vegetation biomass at the hectare scale. Accuracy shall be 
within 20 Mg/ha for 80% of areas of biomass less than 100 Mg/ha.

Disturbance: Map global areas of vegetation disturbance at 1 ha resolution annually for areas losing at 
least 50% canopy cover with a classification accuracy of 80%
Map crop area  at 1 ha resolution every 3 months with a classification accuracy of 80%.
Agriculture:

Inundation: Map inundation extent within inland and coastal wetlands areas at a resolution of 1 
hectare every 12 days with a classification accuracy of 80%. 
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L-band SAR Sensitivity to Biomass

Rosen, This document does 

Global Biomass Product must be derived from Fusion Approach
For low biomass density (150 Mg/ha) radar sensitivity is high but impacted by structure & environment
For high biomass density ( >150 Mg/ha) data fusion with GEDI and/or BIOMASS required

High Priority Fusion Region
Lower to no  sensitivity of 
radar
Domain of data fusion and 
synergism with GEDI and 
BIOMASS

Biomass < 150 Mg/ha 
Low Priority Fusion Region
Higher sensitivity of radar
Domain of NISAR Performance



KDP-B DPMC 2-163

Expected Biomass 
Change 

Recovery from 
Disturbance

Carbon Sink
Carbon Source

Carbon Sink

time

Mature forest is a mosaic.

Carbon disturbance recovery 
dynamics are non-linear as the 
all-aged successional patches 
become desynchronized to 
produce the mixed-aged mature-
forest mosaic.

Successional patches 
recovering from 
disturbance

Trees, Forests, Time, Space, Scale



KDP-B DPMC 2-164

The non-equilibrium dynamics cause forest behave differently at small 
area from expected landscape scale.  (Shugart & Saatchi, 2011)

Large-Scale Dynamics
≠

Small-Scale Dynamics



KDP-B DPMC 2-165

Forest Biomass Dynamics Can be Studied at two scale:
At a large scale: a forest stand seeks an equilibrium state with a 
particular mean configuration. This state once attained remains the same, thereafter. 
At a small scale (the so‐called the gap scale): the forest ecosystem never reaches an equilibrium state 
and is continuously undergoing changes driven by the presence of large trees. 

Converges to 
the Average

Doesn’t touch 
the average

Shugart, Saatchi, Hall, 2010

Non-Equilibrium at 
Small Scale

Equilibrium at 
Large Scale

≠

Scale of Disturbance & Recovery
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Global Forest Growth Rate
1-ha spatial resolution

Liu et al. 2025
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Importance of Secondary Forests

• Tropical secondary forests (SF) in 2020 
• Areas of SF < 100 years: 240 Mha
• Areas of SF <  20 years: 155 Mha 
• Average Carbon Gain (2010-2020): ~400 MtCO2e yr-1

• Allowing SF grow by 2050: 1.5 GtCO2e yr-1

• The same amount of carbon from ARR requires: ~340 M ha of new tree planting in next 5 years 

Robinson et al. 2025
Liu et al. 2025 (unpublished)
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Secondary forests (SF) are part of the global land use activities.
SF short-term and long-term carbon sequestration capacity 
depend strongly on local, national and international policy and 
market forces

Drivers of Secondary Forests:
Culture, Market, Policy 
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2003 Burn Recovery after 1988 Burn Pine Beetle Disease

NISAR would provide annual vegetation disturbance and deforestation maps globally at spatial scale of ~1 ha

Recovery Phase

Disturbance Event 

NISAR  would quantify fluxes in 
terrestrial sources and sinks of 
carbon resulting from disturbance

Radar backsatter 
characteristics of 
post-disturbance 
recovery.

S. Saatchi et al., 2007
Yellowstone

AIR-SAR L-Band

Cross-pol measurement is key to 
detecting structural differences in 
vegetation, driving requirement for 
multi-pol baseline and cross-pol 
threshold radar capability.  

Global Monitoring of 
Vegetation Disturbance and Recovery 

L-HH ALOS PALSAR 
21° Incidence

L-HH ALOS PALSAR FBD 
34° Incidence

L-HV ALOS PALSAR 
21° Incidence

L-HV ALOS PALSAR FBD 
34° Incidence

NISAR  would provide 
acquisitions with both 
polarization and incident 
angle variations; both 
critical for effective 
disturbance monitoring.
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SAR Geometry and Temporal Effects

Multiple dates & multiple surface slope 

SAR Observation Geometry SAR Pixel vs Lidar and Ground Pixel

After correction for surface slopes After averaging backscatter over multiple dates
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NISAR Biomass 
Algorithm Implementation

.

67.0%  within 20 Mg/ha.
45.4%  within 10 Mg/ha.

74% within ±20 Mg/ha.
46% within ±10 Mg/ha.

82% within ±20 Mg/ha.
51% within ±10 Mg/ha.

5 scenes summer 10 scenes spring & summer 14 scenes spring, summer & fall

Winter scenes with snow 
cover require model 
improvement

530 lidar derived biomass 
used in model validation

NISAR 

RM
SE

( M
g/

ha
)

R2

NISAR Algorithm Performance
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RS1: Decem
ber 2022

RS1: M
arch 2024

0.          0.5           1.0          1.5          >2.0

30

20

10

Ra
da

r-
ba

se
d 

AG
B 

(M
g/

ha
)

2016          2018          2020           2022           2024        

Yea
r

✔ Direct biomass and Radar-based Stocking Index can be 
used for dynamic baselining 

✔ Estimate of additionality & tracking carbon credit available 
at 6-12 months after tree planting

Radar Stocking Index Captures Growth of Tree Plantation

RSI
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True Additionality

Time

EVI

40%

NDVI

55%

VSPI

68%

HI

70%

RSI/AG
B

90%
Captured Additionality

Performance Benchmark

CTrees 
Model



175

NISAR Imagery, Amazon Basin
Agriculture Frontier in the State of Tocantins, Brazil (7.019 S, 49.072 W)

R; HH
G: HV
B: 
HV/HH
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NISAR Sensitivity to AGB

R; HH
G: HV
B: 
HV/HH

Comparison of NISAR data and Global GEDI-based Biomass Map
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AGB Estimation

0          50        100       150         > 
200 AGB (Mg/ha)

R; HH
G: HV
B: 
HV/HH
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Global Vegetation Aboveground Biomass

< 20 Mg/ha < 100 Mg/ha > 100 Mg/ha
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Global Vegetation Biomass Dynamics

Low

High

STD of Biomass (2000-2024)
10 km Grid Cell

Global Vegetation Biomass Dynamic

Yu and Saatchi et al., 2025
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Summary

• NISAR focuses on the most dynamic components of global forests 
(A TRUE GEDI Satellite: Global Ecosystem Dynamic Investigation)

• Monitoring changes of forest cover from disturbance (fire, 
hurricane, insects, droughts)

• Monitoring recovery of forest after disturbance and land use

• Monitoring forest health and productivity by providing habitat 
structure, changes of canopy water content, monitoring soil 
moisture changes and drought stress 

NISAR will provide the first forestry dedicated global observations  



NASA-ISRO SAR 
(NISAR)

Calibration and 
Validation

Community Town Hall

Artist’s Concept

NISAR Ecosystems
Science Definition Team



São José dos Campos, 30 Oct 2025

SynCER: Synthesising post-disturbance Carbon Emissions and Removals 
across Brazil’s forest biomes

Session 2.1 (Part 2): Estimates of carbon 
accumulation from various approaches



São José dos Campos, 30 Oct 2025

Session 2.2: Other metrics for 
identifying secondary forest success 
(eg. biodiversity, landscape metrics, permanence)



Patterns and Drivers of 
Vegetation Structure

in Amazonian Secondary Forests

Catarina Jakovac

20th June 2025

184



Jakovac et al 2021, Land use effects on secondary succession

Continental scale = Environmental conditions

Regional scale = Environ + 
LULC

185



Heinrich et al 2021, Large carbon sink potential of SF

Drier (more seasonal) regions were more affected by

anthropogenic drivers. Why?

❖ ? less resilient to anthropogenic impacts

❖ ? higher fire and deforestation frequency (broader

gradiente = stronger effect)

❖ ? lower forest cover in the landscape due to longer

LU lead to lower regrowth rates 

186

Environmental conditions and 
anthropogenic factors
vary across space



Hypothesis: Wetter regions are more 

strongly affected by anthropogenic 

impacts than drier regions, because 

species did not evolve with fire. 

How environmental and land use drivers 
interact?



Climatic gradient Land use gradients

188

How environmental and land use drivers 
interact?

Same-aged Young SF: 4-8 yrs old

n= 88 forest inventory plots

FARMER INTERVIEWS

• # slash and burn events

• Date OGF was cut

• Age of SF



Jakovac, Giles et al in prep. 
189

Vegetation structure
➢ Increase wood density
➢ No interaction effects of site * LU

❖ Change in species composition to more conservative species and reduced dominance by
“classic pioneer species”

R2 = 0.28

n= 55 plots

Wet

Long dry Season
Short dry Season

Wet



Jakovac, Giles et al in prep. 
190

Vegetation structure
➢ Change in wood density is related to changes in species composition

Duration/frequency of previous land use 

Shift species composition

Regrowth rate

Wood density



Jakovac, Giles et al in prep. 
191

Vegetation structure
➢ Decrease basal area
➢ Decrease AGB 
➢ No interaction effect of site * LU

Wet

Long dry Season
Short dry Season

Wet

n = 88 plots

Basal area (m2/ha) AGB (Mg/ha)



How environmental and land use drivers 
interact?

• Higher duration of land use (and frequency of
deforestation) reduces AGB recovery

• The effect size of land use is similar across climatic
regions (preliminary) 

• Reduction in AGB is driven by basal area and height
more than by wood density

• Vegetation diversity...



Retrieving land-use history (interviews x RS)

Breakpoint detectionLULC classification along landsat time series - CMAP

193

Comparison with local landowner interviews 
shows CMAP effectively estimates:

# cycles: mean diff -0.8 ± 1.9  cycles (55% of 
samples within ±1 cycle)

SF age: 0.4 ± 3.0 years (93% of samples within ±3 
years for age)

(n = 88 samples)

in #cycles

Reis, Escada, Giles,..., Jakovac et al in press

Mean diff of −0.23 cycles;

No strong systematic error of 
over-or underestimation

Dutrieux, Jakovac et al 2016



Proxies for Land-use history

194Jakovac, Giles et al in prep.

• #deforestation events since OGF deforestation

• Land use duration = total time in agric/pasture use 

since deforestation

• Year of OGF deforestation (e.g. PRODES)

Year of
deforestation of
OGF

LU duration (yrs)

#defor events LU duration



Retrieving land-use history

195Reis, Escada, Giles,..., Jakovac et al in press

Limitations

• Requires long time series (landsat, 30m res)

• Secondary forest patches are small (require high res)

• Rapid vegetation recovery = short time window to detect 

”deforestation” events may underestimate deforestation 

frequency and overestimate SF age

• Current SF patches are mosaics with different LU histories

6 months cassava field



Obrigada

catacj@gmail.com
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Proxies for Land-use history

197Jakovac, Giles et al in prep.

• Landscape forest cover

Buffer 500m

Year of
deforestation of
OGF

Buffer 1000m Buffer 1500m Buffer 4000m

LU duration (yrs)

#deforestation
events



São José dos Campos, 30 Oct 2025

Session 2.2: Other metrics for identifying secondary 
forest success

André Giles

Simple ecological indicators benchmark 
regeneration success of Amazonian 
forests



‹Nr.› 

Regeneration Success

Sample illustration

Ecological Integrity

Low limitation to successional 
trajectories

1.High landscape 
integrity 
(Forest cover/Species availability)

2. Low Intensity 
previous land-use



‹Nr.› 

Regeneration Success

⚬ Diversity
⚬ Forest 

structure
⚬ Functioning

Sample illustration

Ecological Integrity



‹Nr.› 

NR Amazônia

1. The drivers of forest 
regeneration in the Amazon

1. Set ecological indicators to 
evaluate regeneration success

Sample illustration



‹Nr.› 

Methods

⚬ 448  SFs plots 

⚬ 24 sites 

⚬ 150 000 trees 

> 5 cm DAP

Sample illustration

Data compilation

⚬ 5 - 70 years 

⚬ 88% < 30 years  

⚬ 1.500 a 

3.000 mm ano-1



Methods
Biomass

Basal area
SH
Stem density

Species Richness 
(Sp 100 ind.)
Species Diversity
(Hill 1)



Biomass

Basal area
SH
Stem density

Species Richness 
(Sp 100 ind.)
Species Diversity
(Hill 1) ‹Nr.› 

Methods
Climate (CHELSA)
CWD, temperature, seasonality

Soils (SoilGrids & Zuquim et al. 2023)
pH, base saturation, CEC, and bulk
density

Anthropogenic impacts (MapBiomas)
Land-use duration
Forest cover
Deforestation frequency
Fire frequency



Drivers of Forest Regeneration 
Ecological Integrity



Setting Reference Values
EI= Age + Soil + Previous land-use + Error

Deforestation Frequency (<1 
Deforest.)

Land-use Duration (<8 years)



Setting reference values



Setting reference values



Setting reference values 

5 years 10 years 15 years 20 years

43

(Mg. 

ha−1)

83.4 

(Mg. 

ha−1)

106.2 

(Mg. 

ha−1)

123

(Mg. 

ha−1)



Implications
• We identify the main drivers of Amazon forest regeneration and 
provide reference values for ecological integrity across successional 
stages and regions.

• These reference values guide restoration outcomes, reduce policy 
uncertainties, and support the effective implementation of public 
policies



Next steps
• Identify these indicators and reference values using remote sensing 
tools (Ecological Integrity from remote sensing)

• Increase the predictive capacity from early-years and across 
successional trajectories (SF Permanence).

• Integrate field and remote sensing data



Furthermore Information

https://www.regenera-amazonia.eco.br/



‹Nr.› 

Obrigado
Thank you

Gracias
Sample illustration

andregiles.bio@gmail.com
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Session 2.2: Other metrics for identifying secondary forest success.

Rodrigo Nascimento

Monitoring carbon and biodiversity during 
natural regeneration: contributions from 
Sustainable Amazon Network (RAS)
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RAS

• Multidisciplinary network founded in 2009
• >400 plots data 
• Biodiversity groups

• Trees, lianas and palms (small and large)
• Birds
• Dung beetles

• Soil conditions (macro, micronutrients, and 
texture) and microclimate

• Integration between ecological and social 
dimensions

Aims, distribution, and contributions

Co-founders

Joice Ferreira Jos Barlow
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Sampling methods

*Santarém Region – intensive RAS research sites Nunes et al. 2022 PNAS
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Some key messages about carbon estimates 
from field data
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Disturbances significantly impact forest 
carbon stocks

UF LF LBF SFUF LF BFLBF SF

Even highly degraded primary 
forests store more carbon than 

secondary forests

Berenguer et al., 2014 GCB

Secondary forests stock ~ 75 
and 67% less carbon 

respectively than primary 
forests.
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Furthermore, small individuals are very 
important in the initial carbon stocks

Cardoso et al. Submitted - Ecosphere

82%

18%
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Carbon accumulation varies greatly between 
regions

Elias et al. (2022)-FORECO
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• The carbon balance 
of secondary forests 
is negatively 
affected by severe 
droughts

• Growth reduction

Elias et al. (2020)-Ecology
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Hyperdominance of carbon and abundance in 
secondary forests - ~ 5% of spp.

~ 9% occur in all regions and successional stages

Elias et al in prep

Carbon
Abundance



10Ferreira, Lennox et al. 2018. Nature 

Clim.Ch. 

Biodiversity grows alongside carbon
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Ongoing research and contributions to public 
policiesFunctional traitsEndangered species

Microclimate
Lima et al. in prep.

Public 
policies
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Thank you, and see you next time!

https://ras-network.org/
rodrigoliveira.nascimento@gmail.c
om
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(12:30-13:30) Lunch

SynCER: Synthesising post-disturbance 
Carbon Emissions and Removals across 
Brazil’s forest biomes
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Workshop and breakout groups

SynCER: Synthesising post-disturbance 
Carbon Emissions and Removals across 
Brazil’s forest biomes
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Plenary: Feedback from discussions

SynCER: Synthesising post-disturbance 
Carbon Emissions and Removals across 
Brazil’s forest biomes


