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Biomass maps used in inventory
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Biomass estimation in the
Amazon basin and GHG
emissions inventories

Jean Ometto
jean.Ometto@inpe.br

EBA o AMAZONIA
LUM  REVELADA '©




Some of the Carbon world in 2014
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Brazil: deforestation in the Amazon forest

Scientists are concerned by the rate at which it is disappearing 2014 setto be worl d'S hottest year over
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Forest Biomass Maps
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Carbon stock loss from deforestation through 2013 in
Brazilian Amazonia
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PHILIPF MARTIN FEARNSIDE

Diepuriment of Envirovmensial Dyrsemics, National Istituie for Resaurch in Amazonia (INPA), Av. André Araifo mo 2936,
Marnaus, Amazonas, CEP 69 067375, Brazil

0 250 500 1.000 Km
— — )

Estoque de
carbono total

tC/ha
|

0.1-175

17.6-
263-
351-
439-
52,6 -

614-

1701 -

- 789-

87.7-

06,4 -

1928

2016-
2103-

2191

2279 -
2386 -

2454

2542 -
2629 -

217

1052 -
1140 -
122,7-
13156-
1402 -
1490 -
1578~
1885 -
1753 -
1841 -

26,2
350
438
52,56
813
70,0
788
878
96,3
1051
1139
1228
1314
1401
1489
1577
1664
1752
184.0
1927
-20158
2102
2190
-2278
2385
2453
- 2541
2628
27186
«310¢8

Tl Markedly divergent estimates of
gabull Amazon forest carbon density from

ground plots and satellites

Edward T. A. Mitchard™, Ted R. Feldpausch®, Roel J. W. Brienen’, Gabriela Lopez-Gonzalez’,
Abel Monteagudo®, Timothy R. Baker?, Simon L. Lewis™, Jon Lloyd®, Carlos A. Quesada’,
Manuel Gloor’, Hans ter Steege®®, Patrick Meir"*, Esteban Alvarez',

Alejandro Araujo-Murakami', Luiz E. O. C. Aragio™", Luzmila Arroyo”, Gerardo Aymard™,

Ometto et al., 2014
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Transect: 3,75 km?

Total area: 3.750 km?
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Mapa de Incertezas

Nivel 2 Nivel 3
Parcelas de Campo LiDAR 50 m LiDAR 250 m AGB\Incerteza 250 m

« Calcula a AGB das parcelas e Ajusta um modelo: « AGB e incerteza de 50 m  ° ParaaAmazonia:
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Outras Analises

National Communication to the Climate
Convention and as support for the Forest
Reference Level (FREL)
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Fig. 6 Comparison with the 3rd Brazilian National Communication. Negative values (red) indicate lower values
to 3rd National Communication. Positive values (blue) indicate higher values to the new estimations.
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Areas antropizadas até 2016

AGCarbon EBA considering the average
content from vegetation classes
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scientific reports

OFEN Large-scale variations
in the dynamics of Amazon forest
canopy gaps from airborne lidar
data and opportunities for tree
mortality estimates

Ricardo Dalagnol® -, Fabien H. Wagner'?, Lénio S. Galvdo’, Annia S. Streher”,
Oliver L. Phillips®, Emanuel Gloor’, Thomas A. M. Pugh**, Jean P. H. B. Ometto® &
Luiz E. O. C. Aragdo™’

. N
. remote sensing Ml)s}l

Article
Characterizing Canopy Structure Variability in Amazonian

Secondary Successions with Full-Waveform Airborne LiDAR

Aline D. Jacon !, Lénio Soares Galvio ', Rorai Pereira Martins-Neto >, Pablo Crespo-Peremarch >4,

Luiz E. O. C. Aragiao ', Jean P. Ometto **’, Liana O. Anderson *"’, Laura Barbosa Vedovato 7,

Celso H. L. Silva-Junior *", Aline Pontes Lopes ", Vinicius Peripato ", Mauro Assis !, Francisca R. S. Pereira
Isadora Haddad ', Catherine Torres de Almeida *, Henrique L. G. Cassol '1° and Ricardo Dalagnol '12.+(0

Science of Remote Sensing 6 (2022) 100067
Contents Hsts available at Sciencelirect
(
Ry ;A Science of Remote Sensing

jou"\ﬂ' MMONQOT www ackancadirect comijoumaliaciance-of-remota-sanasing

Assessment of terrain elevation estimates from ICESat-2 and GEDI
spaceborne LiDAR missions across different land cover and forest types

Mikhail Urbazaev ™, Laura L. Hess”, Steven Hancock ©, Luciane Yumie Sato’,
Jean Pierre Ometto “, Christian Thiel ®, Clémence Dubois ”, Kai Heckel , Marcel Urban”,
Markus Adam ", Christiane Schmullius®

A few other contributions

g' OPEN ACCESS

', R ) ECOLOGY
NAS RESEARCH ARTICLE | o\ \craAINABILITY SCIENCE

A large net carbon loss attributed to anthropogenic and natural
disturbances in the Amazon Arc of Deforestation

T e

‘m,

Ouidiu Csilik™'~& 2, M hael Keler** &3 Marcos LoNgo’, Antonio FerraZ’, Ekena Rangel Pinsge ' Eric Bastos Gorgens G an P Ometto’
Vinidus Silpueiro® { '.’. David Brown ".f.f, Paul D ,n'-,' WK C. Cushman and Sassan Saxchi®
- -
nature communications

Article https://doi.org/10.1038/541467-025-61856-1

Human influence on Amazon’s aboveground
carbon dynamics intensified over the
last decade

Arthur Fendrich @2, Yu Feng @2, Jean-Pierre Wigneron @ %, Jeréme Chave ®°%,
Aman Araza ®%, Zheyuan Li®7, Martin Herold®?, Jean Ometto™,

Luiz E. O. C. Aragdo™", Isabel Martinez Cano', Lei Zhu"", Yidi Xu®' &

Philippe Ciais®’

Received: 23 August 2024

Accepted: 3 July 2025

Published online: 21 July 2025

Ernviron. Res. Lett. 20 (2025) 054024 hetpes//doiorg/10, 1088/ 1748-93 26/adc58¢

ENVIRONMENTAL RESEARCH

LETTERS

LETTER

Degradation and deforestation increase the sensitivity of the

Amazon Forest to climate extremes

Marcos Longo @, Michael Keller'' ), Lara M Kueppers “ 0, Kevin W Bowman ", Ovidiu Csillik' @,
Anténio Ferraz' (0, Paul R Moorcroft’ @), Jean Pierre Ometto’ (), Britaldo S Soares-Filho' ),

Xiangtao Xu'(), Mauro L R de Assis’ (), Eric B Gorgens ™, Erik ] L Larson“", Jessica F Needham' ),

Elsa M Ordway' @, Francisca R S Pereira’ 0, Ekena Rangel Pinagé"” @, Luciane Sato' ", Liang Xu™"'@
and Sassan Saatchi™"'(

More than 10,000 pre-Columbian earthworks are still
hidden throughout Amazonia

CAROLINA LEVIS GUIDO A. MOREIRA DANI GAMERMAN HANS TER STEEGE NIGEL C. A. PITMAN s} . JONAS G. DE SQUZA

)SE IRIARTE MARK ROBINSON [..] AND LUIZE O.C. ARAGAQ (B +220 authors Authors Info & Affiliations

Science 382, 103—109 (2023)

[...]
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Mapping the density of giant trees in the Amazon

Robson Borges de Lima' (), Dicgo Armando Silva da Silva2 ), Matheus Henrique Nunes® (),

Paulo R. de Lima Bitunooun ., Peter Cmnendyk Cmdua Pereira de Oliveira' | _'fg

Daniela Granato-Souza® (7, Rinalde L. Caraciolo Fcncua ), José A. Aleixo da Silva” (),

Jesiis Agum'e-Gunctta (i Tobyjaduon , Jodo R. de Matos Filho'®, Perseu da dea Aparicio' G,
Joselane P. Gomes da Sllva i .joscjullo dc Tolcdo" 'y Marcelino Carnetm Guedes'* (),

Danilo R. Alves de Almeida'* (), Niro Higuchi'* () Falnen H. Wagner'® (7, Jean Pierre Ometto'® () and
Eric Bastos Gorgens' ()

DOI: 10.1111/nph.70634
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Potential map generated by the random forest spatial model to
define ideal zones for the occurrence of high density of giant
trees in the Amazon.

Resolution Tree Height Mapping of thel Amazon forest using Planet NICFl and2 LiDAR-
Informed U-Net Model3

Wagner et al (Remote Sensing in Ecology and Conservation)

model successfully estimated canopy heights up to 40-50 m without much saturation,
outperforming existing canopy height products from global models in this region. We
determined that the Amazon forest has an average canopy height of~22 m.

Events such as logging or deforestation could be detected from changes in tree height,
and encouraging results were obtained to monitor the height of regenerating forests.

Very high resolution map of the Amazon canopy height
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Figure 14. Canopy height of the Amazon forest (m). To facilitate visualization at
very high resolution, the colors represent the estimates from our model, ageregated to
an 30 m spatial resolution using the median.




forest biomass losses
Xu et al (in review)

Small persistent humid forest clearings drive tropical

A few other contributions (in review)
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Beyond forest height and biomass: characterizing the vertical structure of
forests in the Brazilian Amazon
Valle et al (in review)

[...] secondary forests fully recover or even exceed reference areas at the 1-
10 m height stratum after 5 to 10 years but that full recovery for the 20-30
m height stratum has not been achieved even after 35 years

The Global Canopy Atlas: analysis-ready maps of 3D structure
for the world’s woody ecosystems
Fischer et all (in review)

[...] Global Canopy Atlas (GCA): 3,458 ALS acquisitions transformed into
standardized and analysis-ready maps of canopy height and elevation at 1
m2 resolution. The GCA covers 56,554 km?2 across all major biomes.

Fire in a Central Amazon forest: Lingering top canopy loss and initial understory
regrowth revealed by repeated LiDAR
Pontes-Lopes et al (in review)

[... results revealed initial incipient recovery occurring simultaneously to delayed
large tree mortality—where a prior field study did not because of sample scale
dependent detection—highlighting pervasive impacts of fire that may contribute
to a greater sensitivity of rainforests to climate change.”

[...]
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Estimation of Aboveground Biomass In
Old-Growth Forests and Classification
of Forests Across Successional Stages

Polyanna Bispo
Session 2.1 (Part 1): Biomass datasets and missions

Sao José dos Campos, 30 Oct 2025
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MANCHESTER

1824

The University of Manchester

Stratification in a Rainforest ©RainforestJoumal.com

Estimation: 1,053 species account for half of the planet's 800 billion tropical forest trees. The other half are comprised of 46,000
tree species. The number of rare species is extreme, with the rarest 39,500 species accounting for just 10% of trees (Slik et al 2015).




Deforestation/
Clear Cut

g result of a process of
‘-;,_I'Ne'y affects the structu ral

What happens to make a forest 'degraded'?

INTACT ZONE

Tree canopy creates an
enclosed cover

More species of
animals

l',t\).

Less wind at
ground level

Soil and air are more humid,
making it more difficult for fire
fo spread

DEGRADED ZONE

Canopy is more open because of
tree loss

Fewer species of
animals

More wind at
ground level

Soil is drier and there are more
dead trees, making it easier for
fire to spread

https://www.bbc.co.uk/news/science-environment-51300515 EEE



Above Ground Biomass
Taylor & Francis

e Canadian Journal of Remote Sensing
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Journal Canadien de Télédétection

ISSN: 0703-8992 (Print) 1712-7971 (Online) Journal homepage: www.tandfonline.com/journals/ujrs20

Integration of Polarimetric PALSAR Attributes and
Local Geomorphometric Variables Derived from
SRTM for Forest Biomass Modeling in Central
Amazonia

P. C. Bispo, J. R. Santos, M. M. Valeriano, R. Touzi & F. M. Seifert

To cite this article: P. C. Bispo, J. R. Santos, M. M. Valeriano, R. Touzi & F. M. Seifert (2014)
Integration of Polarimetric PALSAR Attributes and Local Geomorphometric Variables Derived
from SRTM for Forest Biomass Modeling in Central Amazonia, Canadian Journal of Remote
Sensing, 40:1, 26-42, DOI: 10.1080/07038992.2014.913477

To link to this article: https://doi.org/10.1080/07038992.2014.913477
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Modeling of forest biomass

Estimated biomass from polarimetric variables (SAR): £)

%
BM=-191,8-10,595t ml — 11,562 a_sl + 634,6 H—463,9 An é‘
1*=0,35, p=0,004 §
error=54,32 Mg/ha §
(26% from biomass mean) & 100! s 2'(50 5 e 5%
i conpenen o e T magmide Opserved biomass (Yehey
entropy; An: anisotropy; E .
Estimated biomass from geomorphometric variables: %” i
BM =-19,67+1,3467 h + 3,053 G é 200 -
1=0,58, p=0,000 % -
error= 45,80 Mg/ha '§ |
(22% from biomass mean) & 0 200 300 460 500
h: elevation; G: slope Observed biomass (Mg'ha)
Estimated biomass from composite model: 3

=3
BM = 31,11 + 142,01 Pv — 598,3 An + 1,465 h + 3,35 G+ 0,4288 7 m3 — §
9,478 T_Wl] é p_oo:
r?=0,74, p=0,000 ki

_ d

erro= 33.15 Mg/ha £ 100

100 200 300 400 500
Observed biomass (Mg'ha)

(15% from biomass mean)




Estimated biomass from composite model:

BM =31,11+ 142,01 Pv—-5983 An+1,465h+3,35G+ 00,4288t m3—-9,478 1t ml

1*=0,74, p=0,000
erro= 33.15 Mg/ha
(15% from biomass mean)

BM: Biomass; Pv: Volumetric Scaterring Freeman; An: Anisotropy; h: Altitude; G
Slope; 7 m3: Third Component of Touzi Helicity; ¢ m. First Component of Touzi
Helicity

Biomass (Mg/ha)

2

()
o
<o

Predicted biomass (Mg/ha)

100 200 300 400 500
Observed biomass (Mg'ha)




Biomass (Mgha)

35 380+ ®] Observed Estimated
63 360t
100 i | j
138 320¢ o — : The validation of was conducted
175 300+ ) utilizing the biomass values of 10
213 - - = independent samples from the 56. The
250 D . T - B mean biomass value of these 10
288 'S; 2001 2 T o | [ parcels was 210.68 = 40.09 Mg/ha.
325 2, 240t . l—T 9 : The RMSE was approximately 42.96
363 2 220} 7 & ‘% gyt 1 Mg/ha. Comparing the values derived
400 g o | . T | - | | from the model and those measured in
438 @ R il | ¢ - the field (graph on the left), there
475 180¢ |l T | is a mean error of 20.31%, a value
513 160} | | | J considered adequate for
550 140l | ‘ biomass inventory estimation
1 conducted by traditional methods

120r i that employ allometric equations.

100+

S0+ k-

=2 3 4 5 6 7 & 9 10

Plots

Observed and estimated values of biomass data for the
10 sample parcels of the forest inventory. The vertical bars cor-
respond to prediction intervals computed with a 95% confidence
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Figure 2. Map estimates of AGB (a) and AGB standard deviation expressed relative to the AGB (b). The colour bar of the AGB map has
been truncated at 500 Mgha ! to increase contrast, Similarly, the colour bar of the AGB relative standard deviation has been truncated at
100 %. The right-hand panel shows the profile of average AGB along latitude (thick solid line) and the two-sided average standard deviation
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Santoro, et al. 2021, Earth System Science Data htips://doi.org/10.5194/essd-13-3927-2021
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Woody aboveground biomass mapping of the
Brazilian savanna (Cerrado) with a multi-sensor
and machine learning approach

The Brazilian Savanna, known as Cerrado
(Cerrado sensu lato (s.l.)), is the second largest
biome in South America.

Brazil
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 The Cerrado Biome comprises different physiognomies due to variations of soil, topography and human impacts.

 The gradients of tree density, tree height, above ground biomass (AGB) and wood species cover vary according to the
Cerrado formation, ranging from different grassland formations (Campo limpo), savannah intermediary formations
(Campo sujo, Campo cerrado, and Cerrado sensu stricto - s.s) and forest formations (Cerradéo).

cerrado "sensu lato"

15
’ . . 1 . ‘
= | campo limpo : campo sujo : campo cerrado i cerrado ; cerradio t
= ' . M . ‘.
e : : | sensu stricto {
= 1 A ‘ | '
ol
'3
= < - 4
§ :
33 s ) 24w . . : ‘
grassland formation savannic/ formation forest formation

cermado physiognomic gradjent (according to Coutinho (1978), modified)

Bispo, et al. 2020, Remote Sensing https://doi.org/10.3390/rs12172685


https://doi.org/10.3390/rs12172685

29

Study
site

campo limpo

hesght (m)

L-Jnnhh '
grassland formation

The comrado physiognomx gradient (sccoeding o Coutiobo (1978), modfiod L

campo sujo

Mnu%ﬁ

2 e
ooy S Overview
/d; b\ e _A".\:’ / -
N j\\ \v A
:) 4/_{\ \ > —~
{ J\ A Pt

= L

cerrado "sensu lato”

cermado

© campo cerrado
' sensy sincto

savannic formation

.| Study area
Cerrado biome
Administrative boundaries

w<<A>>e
Y

Canopy Height Model [m]
N - .

0 32.83

Bispo, et al. 2020, Remote Sensing https://doi.org/10.3390/rs12172685

WAVZ e
Y T TV K

forest formation |

500000.00

T

600000.00

‘ -.‘*'u;_ = 3 »\ " B WS - 3 3 . e 5 , .ia o

- e ! Y b § \x iy

; NG e
IRio Vermelho watershed || S B

P A [y

00°00000€8

cermadio

|

!

o

8200000.00
00°00000¢8

500000.00 600000.00


https://doi.org/10.3390/rs12172685

30F]oristic and structural characterisation of the plots located in fragments of native Cerrado
vegetation in the Rio Vermelho watershed, Goias State, Brazil. WS-FS = savanna-cerradao
transition zone, TFS = cerradao, FS-SF = cerradao-seasonal forest transition zone; S =
species richness, DBH =diameter at breast height.

DBH Range

Plot ID Vegretation S. D 5 (cm) H(m) g TZBA AGB_
ype (Species) (Ind. ha™1) (Mean/CV%) (Mean/CV %) (m#/ha) (Mg ha™1)
Itapirapua 1 WS-FS 38 990 (Z'_‘;/'ggg) (1522292) 135 193
Itapirapua 2 WS-FS 2 920 (Z'_‘;;i'% (;‘2/‘;;';‘) 10.8 21.2
Itapirapua 3 WS-FS 45 1030 (15(')‘.);/25‘2_‘}5) é;;;“g) 15.0 245
Itapirapua 4 WS-FS 1 1040 (Z:z/'gg'f) (15;;;5 144 28.2
Itapirapua 5 TFS 36 1140 (15(')‘_’37/2)'1) é_g;;lz_g) 16.4 322
Itapirapua 6 TFS 55 1570 (f(')‘.);/i‘i'z) (22/‘;12_'69) 226 35.3
Itapirapua 7 TES 50 1990 (3273597) (16'2;;;'62) 219 36.8
Itapirapua 8 TFS 60 1440 (15(')‘_);/46%2) (%.?;;f’_'g) 20.1 40.2
Itapirapua 9 TFS 35 1210 (15 001_/2339) (ég;;g g) 17.0 40.9
Goids 10 TFS 11 1260 (foog‘/?é;;) (35_677;; '2) 205 52.8
Itapirapua 11 TFS 39 1260 (:102_/?;;) (16';;:_'; 24.3 54.3
Gois 12 FS-SF 38 1310 (fl"_);/t“;';) (‘3;;3?;) 246 70.4
Gois 13 FS-SF 2% 690 (fé‘.)(;;";'.%) (56%2_/31252) 183 77.0
Goiés 14 FS-SF 27 820 (15;’2‘/:‘;25) (fé‘_)s‘/i‘:_‘;) 22,0 98.3
Goiés 15 FS-SF 24 760 (ff&g_; (1(2):5%226_’5) 244 103.9

Bispo, et al. 2020, Remote Sensing https://doi.org/10.3390/rs12172685
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Variable importance analysis

All datasets _ ALOS backscatter —
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Averaged variable importance analysis across the k-fold procedure for each set of variables derived from Landsat 8 (L8) and ALOS-
2/PALSAR-2 (ALOS) included in the RF model. The R? for each single set of variables and all variables together (left), and decrease in R?
for models excluding a single set of variables (right). ALOS backscatter: y;,, . ALOS indices: RFDI, CpR. L8 reflectances: blue,
green, red, near infrared, shortwave infrared-1, shortwave infrared-2. L8 indices: NDVI, NBR, NBR2, NDMI, and SAVI.
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Cross-validation
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Cross-validation between the AGB map predictions and AGB reference data derived from the LIDAR point clouds. The black dash line
corresponds to the y = x line.

Bispo, et al. 2020, Remote Sensing https://doi.org/10.3390/rs12172685
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8251000 8256000

8246000

AGB maps over part of the Rio Vermelho watershed, Goias State, Brazil, produced by this study (30 m) (A) and by
Santoro et al. 2018 (100 m) (B); Baccini et al. 2012 (500m ) (C); Avitable et al. 2016 (1 km) (D); and Saatchi et al. 2011(1 km) (E).
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Conclusion

One of is the most accurate AGB map (R?= 0.89%, RMSE = 7.58 Mg/ha) over the Brazilian
Savannah

The AGB map showed similar performance for the different vegetation types in Rio Vermelho
watershed

Our methodology characterises the spatial distribution of aboveground biomass over Brazilian
Cerrado using two stage estimates: from the field to LIDAR, and LIDAR to EO data in order to
upscale the AGB estimations

The method was applied later on over the whole Brazilian Cerrado biome
Our results represent an important contribution as a method to monitoring the carbon emissions

in Brazilian Cerrado within the framework of REDD+ under the United Nations Framework
Convention on Climate Change
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Mapping the stock and spatial distribution of aboveground woody
biomass in the native vegetatlon of the Brazilian Cerrado biome
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Aboveground woody biomass (AGWAB, in t.ha'') maps at 30-m resolution for the Cerrado biome, based on two machine learning algorithms
tested (CART, left panel, and RFRandom Forest, right panel). Predictions are mapped over the native vegetation pixels, classified by the
MapBiomas Project Collection 5.0 (forest, savanna, and grasslands).

Zimbres, et al. 2021, Forest Ecology and Management, https://doi.org/10.1016/j.foreco.2021.119615
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Aboveground biomass and multisensory approach
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Forest in different successional stages
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A B C D E

Schematic representation of a tropical forest with different successional stages: A (non-forest); B (secondary forest in initial stage - SFIni); C (secondary forest
in intermediated stage - SFInt); D (secondary forest in advanced stage - SFAdv): E (old growth forest or primary forest - OF).
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(a) Location of the TNF in the Brazilian territory. (b) Zoom on the TNF, enclosed by the dashed line (TNF limits from 2013). The two small rectangles delimit
the area covered by the LiDAR acquisition. (c¢) Zoom on the LiDAR coverage. The whole area inside and outside of the two LiDAR rectangles is covered by each
TanDEM-X acquisition used in this study (2012, 2013 and 2016). Background image: Landsat 8 (14/08/2015).



General characteristics of forests types representative for the area of the TNF (which is part of eastern Amazon region) collected by Lu (2005). DBH, H, AGB and Age represent the interval of the means of stand diameter
(cm), stand height (m), aboveground biomass (kg/m?) and age (years) respectively.

Forest types Characteristics DBH (cm) H (m) AGB (kg/mz) Age (years)

SFIni Herbaceous plants, seedlings, and saplings together are responsible for > 90% of total biomass. The vertical structure is characterized by a full profile of 2-5 2-6 0.5-5 1-5
saplings and herbaceous plants. Saplings are the main structure element and represent the majority of the aboveground biomass.

SFInt Saplings still account for most of the biomass in SFInt. Vegetation structure provides a mix of dense ground cover of saplings and young trees with higher canopy 5-15 6-12 4-10 4-15

than SFIni. There is very small internal difference between canopy and understory individuals. SFInt is characterized by a lack of stratification between canopy
and understory.

SFAdv Trees occupy the canopy and present obvious stratification of forest stand structure in SFAdv. In this stage, there is a major shift in structure that differentiates 10-25 9-17 8-25 10-50
understory from canopy individuals; that is, the presence of saplings is less significant than that of trees. One can find differences between the canopy and
understory in terms of height and density of individuals at both levels.

OF or PF In the mature forest, aboveground biomass and vegetation density can be considerably different depending on soil conditions, species composition, and 13-30 or more 11-25 or more 12-50 -
topography at the site. In a typical mature forest, trees account for the majority of aboveground biomass, reaching > 90%. Many tree individuals are taller than
17 m, and some are between 25 m and 30 m, followed by a few scattered individuals over 35 m tall or emergent.

Acquisition parameters of TanDEM-X. HoA indicates the InSAR height of ambiguity (see Section 3.1).

Date Mode Polarization Orbit Incidence Angle (°) Effective Baseline (m) HoA (m)
05/12/2012 Bistatic/StripMap Dual (HH, VV) Ascending 40.60 110.44 60.65
30/05/2013 Bistatic/StripMap Dual (HH, VV) Ascending 40.56 83.38 80.67

23/01/2016 Bistatic/StripMap Dual (HH, VV) Ascending 40.56 102.00 65.41




Field data from forest plots (0.25 ha) used as reference data. For H, DBH, Age
and AGB the mean and the standard deviation (SD) is given with H being the
stand height, DBH the diameter at breast height and AGB the aboveground

biomass.
N. of Forest H (m) DBH (cm) Age (years) AGB ('kg/mz)
Plots Types
Mean SD Mean SD Mean SD Mean SD
1 SFIni 5 1.2 5 1.8 5 2 0.5 0.1
2 SFInt 9 0.8 10 3.0 15 1 4 0.8
3 SFAdv 14 2.1 19 2.0 30 1 17 1.2
1 OF 19 3.6 21 22 =50 - 29 1.4
Training samples for 2016 Test samples for 2016
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Fig. 6. Interferometric heights derived from TanDEM-X (top panel) and H100 (bottom panel) derived from LiDAR CHM, for 2012, 2013 and 2016. For each year and
sensor, the two rectangles correspond to the LiDAR coverage.
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HH (05/12/2012) and LiDAR H100 (31/
07/2012). The selected classes were old
growth forest (OF), secondary forest in
advanced stage (SFAdv), secondary
forest in intermediary stage (SFInt),
secondary forest in initial stage (SFIni)
and non-forest (NF). The two rectangles
correspond to the LIDAR coverage.
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Table 12

Confusion matrix and cross-validation of TanDEM-X and H100 for 2012.

Classes Ref. OF Ref. SFAdv Ref. SFInt Ref. SFIni Ref. NF
H100%
OF 96 3 0 0 0
SFAdv 4 87 8 0 1
SFInt 0 10 83 1 0
SFIni 0 0 9 98 4
NF 0 0 0 1 95
100 100 100 100 100
Overall Accuracy = 0.92; Kappa = 0.90
— TDX HH%
OF 93 2 0 0 0
SFAdv 7 84 9 0 0
SFInt 0 14 79 6 0
SFIni 0 0 12 85 1
NF 0 0 0 9 99
100 100 100 100 100

Overall Accuracy = 0.87; Kappa = 0.84
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Supervised classification of
interferometric height from TanDEM-X
HH (30/05/2013) and H100 (10/09/
2013). The selected classes were old
growth forest (OF), secondary forest in
advanced stage (SFAdv), secondary
forest in intermediary stage (SFInt),
secondary forest in initial stage (SFIni)
and non-forest (NF). The two rec-
tangles correspond to the LiDAR cov-

erage.



Table 13
Confusion matrix and cross-validation of TanDEM-X and H100 for 2013.

Classes Ref. OF Ref. SFAdv Ref. SFInt Ref. SFIni Ref NF

H100%
OF 95 4 0 0 0
SFAdv 5 88 8 0 0
SFInt 0 8 84 1 0
SFIni 0 0 8 99 0
NF 0 0 0 0 100
100 100 100 100 100 100
Overall Accuracy = 0.93; Kappa = 0.91
— TDX HH%
OF 93 5 0 0 0
SFAdv 7 82 8 0 0
SFInt 0 13 80 13 0
SFIni 0 0 12 80 0
NF 0 0 0 7 100
100 100 100 100 100

Overall Accuracy = 0.87; Kappa = 0.84




InSAR height TDX HH 2016 H100 2016 I el st o

HH (23/01/2016) and H100 (23/03/
2016). The selected classes were old
growth forest (OF), secondary forest in
advanced stage (SFAdv), secondary
forest in intermediary stage (SFInt),
secondary forest in initial stage (SFIni)
and non-forest (NF). The two rec-
tangles correspond to the LiDAR cov-

erage.

B OF
Bl SFAdv

B SFInt
SFIni




Confusion matrix and cross-validation of TanDEM-X and H100 for 2016.

Classes Ref. OF Ref. SFAdv Ref. SFInt Ref. SFIni Ref. NF
H100%
OF 84 16 0 0 0
SFAdv 8 74 23 0 0
SFInt 7 10 64 3 0
SFIni 1 0 13 70 0
NF 0 0 0 27 100
100 100 100 100 100
Overall Accuracy = 0.80; Kappa = 0.75
— TDXHH%
OF 82 15 0 21 0
SFAdv 15 79 28 11 0
SFInt 3 6 46 11 0
SFIni 0 0 25 18 50
NF 0 0 1 39 50
100 100 100 100 100

Overall Accuracy = 0.55; Kappa = 0.43




Conclusions

* Qur results suggest that the approach described here allows to monitor the successional forest
stages

* More investigations are needed to confirm these capabilities in different tropical forest test sites,
and to further assess the robustness of the methodology.

* The availability of an external (LIDAR) DTM, which often is not the case in other tropical regions,
limits the use of this approach with TanDEM-X data and the coverage of the resulting classification
maps.
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of biodiversity
https://ipam.org.br/initiative-brings-together- l ' I I O I\/l BO
quilombola-knowledge-and-technology-for-the-

benefit-of-biodiversity/

NN MERGING KNOWLEDGE FOR CONSERVATION

e Amazonia +10 Initiative
https://www.amazoniamaisdez.orqg.br/en/iniciativa

https://Iwww.instagram.com/projetobiotechquilombo/


https://www.manchester.ac.uk/about/news/biotechquilombo-pioneering-community-led-biodiversity-monitoring-in-the-amazon/
https://ipam.org.br/initiative-brings-together-quilombola-knowledge-and-technology-for-the-benefit-of-biodiversity/
https://www.amazoniamaisdez.org.br/en/iniciativa

Some challenges

Persistent uncertainties in biomass estimation and in detecting biomass changes over time.
Inconsistent classification of secondary forests.

Limited understanding of vegetation recovery dynamics under different disturbance regimes—both
anthropogenic and natural—and how these affect forest regrowth and resilience.

The need to standardize and harmonize datasets—including field measurements, LIDAR, and
satellite imagery—to ensure long-term comparability, consistency, and interoperability across
spatial and temporal scales.

Lack of field plots specifically designed to validate remote sensing data and capture the
complexity of tropical forest regeneration processes.



Future investigations

Integrate other variables such as: microclimate, geomorphometric variables (e.g., slope, elevation,
curvature, topographic position index) to capture terrain-driven variations influencing vegetation
patterns

Incorporate structural metrics such as canopy height, canopy density, and vertical complexity
derived from LIiDAR or radar data.

Use contextual variables (e.g., proximity to mature forest, land-use history, disturbance type and
frequency, trends) to better characterize regeneration environments.

Analyse temporal trends in spectral and structural indicators to distinguish stages of forest
recovery and succession dynamics.

Combine field data (forest inventory) multisource remote sensing data (optical, radar, LIDAR) to
enhance separability between successional stages.

Apply machine learning or deep learning approaches to integrate diverse features and improve
classification accuracy.

Validate classifications using well-designed field plots representing different successional stages
and disturbance histories.
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Synthesis of regrowth rates in secondary forests

Mikhail Urbazaev, Viola Heinrich, Maurizio Santoro, Martin Herold
Session 2.1: Biomass datasets + missions

Sao José dos Campos, 30 Oct 2025
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Regrowth rates from different sources

« ESA CCI Biomass regrowth rates

o slope from time series maps

o overlaid with MapBiomas Age

« |INPE-ALS space-for-time approach

Literature
« Heinrich et al. 2021

o CCI Biomass v3 space-for-time

B North-West re[gion 200, 3
1 North-East & Central-North region V&, <=
° O|C0mb et al 2023* South-West & Central region

Bl South-East & North region — '

vy ¢ ) 54
5 0 ¢ 250 500 km

o  GEDI space-for-time Regions for estimating regrowth rates

*different forest age map (Heinrich et al. 2021)

« Robinson et al. 2025

o based on field estimates and modeling
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Regrowth rates from ESA CCl Biomass

_ North-West _ North-East & Central-North °
s 12 s 12
1_| 1—| I .~" S~ _|
(@) (@)) )
2 6- 2 N\ = ’
qé. 3 %)_ o~
C_D 0- C_D r orth-West region 1
af) m .:o:tt:-\é\;stt& gentral-Nor‘th regi"cﬁ)le- AN
Y Y Y y T T r Y Y Y T T T T r Y outh-Eas orth region ( o O B
O 5 10 15 20 25 30 35 O 5 10 15 20 25 30 35 E—
Age [years] Age [years] CCI-AGBD
600[ R®=0.61
South-West & Central South-East & North RMSE=85.32 .
- — 500| rRMSE=56.97 %
S 121 S 121 = y=7.67+.0...8.1:;§..'.- -
T T < 400 '
© S &=,
= = o
= = %300
=, =, =
L
: 2 z
D L 7 L 100
m m
2 _3_ 2 _3_ 0 s b .
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 o100 e adeD h D %
Age [years] Age [years]
I N
/7 Helmholtz Centre (/2 )
Y GFZimuon (= f ik @ esa 13

Amazonia



Regrowth rates from INPE-ALS

North-West North-East & Central-North
200 200
m 150 m 150
2 2
"y 100 s 100
— —
< 50 < 50
0 — | | | | 0 ' L ! | | | |
N ‘o Q ‘o Q M O X N <o Q ‘o Q M O X
N N SR S N1 N VNP
ARSI ARSI
Time Since Disturbance (years) Time Since Disturbance (years)
South-West & Central South-East & North |
200 200 North-West
North-East
m 150 m 150 h-\Wes
9:100_ 9:100_ South-East .
%, %,
— —
< 50 < 50
= 0 =
0 . , . 0 . , .
N <o Q ‘o Q & o X N <o Q ‘o Q @ o o
N N SR S Q N VNP
ARSI ARSI
@ Time Since Disturbance (years) Time Since Disturbance (years)
'«K
- W/ Helmhoitz Centr
SynCER //% GFZfo?geoscienirese |p.AM

Amazénia



Regrowth rates from different sources
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Summary

ESA CCIl Biomass time-series products allow the estimation of regrowth rates for individual
secondary forest age classes

Regrowth rates from INPE-ALS show a similar pattern to the CCI in the Eastern Brazilian Amazon,
with the highest rates at around 10-20 years

Since INPE-ALS represents sampled AGB, its estimated regrowth rates are influenced by the
MapBiomas product and its definition of secondary forest

Robinson et al. 2025 report relatively little variation in regrowth rates across the age classes
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First results from the ESA BIOMASS Mission
in Brazilian Forests

Mikhail Urbazaev, Viola Heinrich, Martin Herold
Session 2.1: Biomass datasets + missions

Sao José dos Campos, 30 Oct 2025

work conducted under ESA BIOMASS DISC

as part of the BIOMASS In-Orbit Commissioning Programme PN )
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The BIOMASS mission: ESA’s forest mission

Key facts

ESA's 7' Earth Explorer
Designed to observe forest height and biomass
Launch date: April 29, 2025

First civilian full polarimetric P-band SAR
(Synthetic Aperture Radar)

Two mission phases:

~  TomoSAR (18 months: one global
coverage at the beginning of the mission)

~  PolInSAR (3.5 years: five repeated global
coverages)

5 years lifetime

Swath width is 51.1 km

Spatial resolution (SLC):
~59 m (range) x 8 m (azimuth)

Primary science objectives

source: esa.int

Forest Diomass

ADove-ground DIOMass
(tons/ hectare)

Upper canopy height (meter)

""" ' “'-.y“. e |

Disturbances

Aress of forest clearing
(hectare)




Signature analysis of BIOMASS L1B amplitude (commissioning data)
across secondary forests and their ages
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Summary

First comparison of BIOMASS L1B IOC products with reference data (Brazilian NFl and INPE-ALS)
The data are not yet radiometrically or polarimetrically calibrated, nor terrain normalized
BIOMASS amplitude correlates with NFI-AGBD and ALS canopy height at cross-pol

BIOMASS amplitude shows a stronger correlation with forest age as ALOS-2 PALSAR-2

Further improvements (geolocation, calibration, terrain normalization) are expected to improve
the correlation with the reference data

Ground notched data (i.e., excluding the signal from ground) are expected to provide a significant
improvement

work conducted under ESA BIOMASS DISC
as part of the BIOMASS In-Orbit Commissioning Programme
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SynCER: Synthesising post-disturbance
Carbon Emissions and Removals across
Brazil's forest biomes

(10:35-11:00) Break

Sao José dos Campos, 30 Oct 2025
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Temporal trajectories of biomass in
Brazil from the ESA CCI Biomass
dataset

Maurizio Santoro (Online)
Session 2.1 (Part 1): Biomass datasets and missions

Sao José dos Campos, 30 Oct 2025
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The CCI Biomass project - background

« Above-ground biomass (AGB) is an Essential Climate Variable (ECV)
within the Global Climate Observing System (GCQOS).

* One of the objectives of the CCI Biomass project is to generate global
maps of AGB using a variety of Earth Observation (EO) datasets and
state-of-the-art models for several epochs spanning two decades
and assess biomass changes

« Specs of the data products were shaped by requirements from the
climate and carbon modelling community (GCOS) as well as from
other communities including climate policy
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Satellite observations of forests

Epoch Radar - Optical
e o005 | [EAS.
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Field measurements of biomass

 Measurements from on ground surveys
typically form the backbone of a
biomass retrieval algorithm

* |n practice, access to such data is
cumbersome resulting in an uneven
geographic distribution

* This constraint also decimates the
amount of retrieval models relating
space data to biomass
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Gridded Heatmap of Plot Count (0.5 deg. Grid)
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The CCIl Biomass AGB product

90°N
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30°N

AGB, 2020, CCI Biomass v6 [Mg ha™']
[ [ [

60°E

Current release: v6 / Pixel size: 1 ha/

// Helmholtz Centre
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Temporal coverage: 2007, 2010 and 2015-2022
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The CCIl Biomass AGB change product

 AGB change = AGB difference between two years

 AGB change is accompanied by the AGB change SD & quality flag layer
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The CCIl Biomass AGB change product

 AGB change = AGB difference between two year -

 AGB change is accompanied by the AGB change SD & quality flag layer
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The CCI Biomass AGB change product

 AGB change = AGB difference between two years

 AGB change is accompanied by the AGB change SD & quality flag layer
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The CCI Biomass AGB change product
 AGB change = AGB difference between two years
 AGB change is accompanied by the AGB change SD & quality flag layer

AGB difference, 2020-2010 [Mg ha™"], 1 ha

0°N 100+

dard deviation, 20202019

potential gain

potential loss

gain

potential gain

improbable

potential loss

no change
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Year
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SynCER

Timeline of the CCIl Biomass dataset

1990

2005
2006
2010

— V6 is the current release (May 2025)

v7: Release in spring 2026 i it i
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Biomass accumulation from CCI| Biomass

1. For each CCI pixels, we computed the slope coefficient of a linear regression
between year of the CClI AGB maps and the AGB values

2. Stratification of slope values (based on MapBiomas datasets)

Primary forest / Secondary forest / Plantation / Agroforestry (reference: MapBiomas)
Undisturbed forest (once detected as such) (reference: MapBiomas)
10x10 deg latitude/longitude blocks

Ecoregion (reference Dinerstein et al., 2017)

3. For each secondary forest pixel (based on MapBiomas) we extracted the age
4. For each primary forest pixel (based on MapBiomas), we computed the

average map-based AGB
@ 7//, GFZismozsene (wey
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Regrowth rates from CCI Biomass

Secondary forest: S1T0W060

» Displaying mean and interquartile
range of slope values per age of
secondary forest

* The parabolic shape is consistent
across Brazil but the peak differs,
being higher in the NW than in the

SE,

SynCER
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What happens in primary forests?

Ecoregion: TrMBF
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Is this real oris it an artefact of the CCI Biomass maps?
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Conclus Skwand\
1. The CCI Biomass dataset is valuable to identify spatic temporal patterns—

2. The dataset should not be used at the pixel level!!

3. The AGB changes between two years make sense only for fast losses or fast
growth (young forest, plantation)

4. The regrowth rates in secondary forests appear to be realistic (see also talk
by M. Urbazaev)

5. The trends detected in primary forests need to be taken with care!!

6. Future versions of CCl Biomass will reinforce our initial interpretation of the

biomass trajectories

e
i/m /'///// GF Z o ceoscences.
SynCER




Access to the CCIl Biomass datasets

, CEDA

About News SearchCatalogue GetData Deposit Tools

Archive

{2@sa ESABiomass Climate Change Initiative

" 5 (Biomass_cci): Global datasets of forest above-
ground biomass for the years 2007, 2010, 2015,
2016,2017,2018,2019,2020,2021 and 2022, =
v6.0 il
| Permitted Use: Anydsr Open Access & Download B} SeeRelated Documents \
B
Abstract

This dataset comprises estimates of forest above-ground biomass (AGB) for the years 2007,2010, 2015, 2016, 2017, 2018, 2019,
2020, 2021 and 2022. They are derived from a combination of Earth observation data, depending on the year, from the Coperni-
cus Sentinel-1 mission, Envisat's ASAR (Advanced Synthetic Aperture Radar) instrument and JAXA's (Japan Aerospace Explo-
ration Agency) Advanced Land Observing Satellite (ALOS-1 and ALOS-2), along with additional information from Earth observa-
tion sources. The data has been produced as part of the European Space Agency's (ESA's) Climate Change Initiative (CCl) pro-
gramme by the Biomass CCl team.

iR

This release of the data is version 6. Compared to version 5, version 6 consists of an update of the maps of AGB for the years
2010, 2015, 2016, 2017,2018, 2019, 2020, 2021 and new AGB maps for 2007 and 2022. AGB change maps have been created
for consecutive years (e.g., 2020-2019), for a decadal interval (2020-2010) as well as for the interval 2010-2007. The pool of re-
mote sensing data includes multi-temporal observations at L-band for all biomes and for all years and extended ICESat-2 observa-

tinnc ta ralihrate ratriaval madale A ract fuinctinn that nracarvec tha tamnaral featiirec ac avnraccod in the remata cancino data

0.
L

Citable as: Santoro, M.; Cartus, O. (2025): ESA Biomass Climate Change Initiative (Biomass_cci): Global datasets of forest above-
ground biomass for the years 2007, 2010, 2015, 2016, 2017, 2018, 2019, 2020, 2021 and 2022, v6.0. NERC EDS Centre for
Environmental Data Analysis, 17 April 2025. d0i:10.5285/95913ffb6467447ca72c4e9d8cf30501.
https:/dx.doi.org/10.5285/95913ffb6467447ca72¢4e9d8¢f30501
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EO-based forest carbon removals and
emissions in Amazon

Yidi Xu (Online)

Session 2.2: Other metrics for identifying secondary forest success

Sao José dos Campos, 30 Oct 2025
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ONE FOREST

VISION

LOLE

EO bqsed forest carbon removals and

emlssmns in Amazon

Yidi Xu, Liang Wan, Philippe Ciais
Laboratory for Climate and Environmental Sciences, France

2025.10.29
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Background

Amazon: globally important carbon stocks

C sink? C sources ?
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« CARDAMOM == Top-down inversion
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Background

lation o
Sparse Inventory plot in tropics

Bottom-up BK model DGVM si

Source

Response
curves

Deforestation
Land use changes

Old-growth forest sink C
Forest degradation A

Rosan et al., 2024

»

Regional response curves
used in BK models

(Poorter et al., 2016)
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Background

Satellite approach

Road \u"n‘lnu' nl Selectav Aoy

Slagter et al., 2024

Small size disturbance

1) Improve the BK model with spatially-explicit regrowth curves

2) Annual canopy height and biomass mapping

{(Heinrich et al., 2023,
Holcomb et al., 2024)

2 %) =3
LI B

(Cook-patton, 2020, Nathinial et al.. 2025)

Satellite-based regrowth curve

Median growth (m)

0 5 10 15 20 25 0
Height class 2018 (m)

(Schwarz et al., 2025)

Yearly CH growth of French forest
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1. Gain-loss method: A spatially-explicit BK model

 Tropical disturbances + ESA CCI Biomass + space-for-time (1990-2020)
« Spatially-explicit BK model performs better than the model based on a continental-average curve
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 Xu et al., in review
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1. Gain-loss method: A spatially-explicit BK model

Outperforms the continental curves
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1. Gain-loss method: A spatially-explicit BK model

Carbon budgets from 1990-2020:

Biogeographical Amazon

Gross gain: 1.4 Pg C ; Gross loss: —6.2 Pg C ;Net: -4.9 Pg C (161.8 TgCl/yr)
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* Xuetal, in review
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Sentinel-2 images Sentinel-1 images

| Temporal stack
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2. High-resolution mapping of forest height and biomass
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Height changes mapping and the comparison with other products

New height change map (10 m) from 2019 to 2022
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Height changes mapping and the comparison with other products

Mato Grosso

Our Height change maps (10m)
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Evaluation of the canopy height change maps

Evaluation: GEDI RH100, Landsat TMF disturbance, GFC tree cover loss, and radar alter

Our CH change is consistent with GEDI RH100 change but can detect more
small disturbances than Landsat disturbance data
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Regrowth rates based on the annual AGC estimation

Method:
Overlap TMF plantation/Afforestation(new growth) /regrowth from deforestation (other regrowth)
AGC rate: CH change and the allometry function.

oY)
(g)

-~ 17.5 - -~ 17.5
L x
>
i 15.0 - = 15.0
- T
= N -
O 12.5 £ 1254
o
S = |
o 10.0 - 3 10.01 |
3 a |
o C . .I.
£ 797 1 _g : ‘.
g 8 <)
5 501 | £ 5.0+ |
| @
¥ 1 Q 25
9, ] . 5
o 2.5 1 2 p
< il | SRR, [
020 =< | 0.0 o !
Plantation Afforestation  Other regrowth Burned area Other regrowth

Growth rate from plantation if higher than the natural regenerated forest

AGC Recovery rate from fire is lower than the regrowth from deforestation
Wan et al., in preparation



Direct estimation of AGB change

Method:

Combine height change and Landsat data to classify C loss and gain from degradation,
deforestation, Regrowth, Other (undisturbed forests).
AGC map and change maps : CH map + allometry function.

Carbon budgets from 2019 to 2022:
Gross gain: 179.8 + 16.4 Tg C/y ; Gross loss: -436.6 + 33.3 Tg C/y ;Net: —256.7 + 37.1 Tg Cly
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Summary

* Our EO-based approach

* Provide the spatially-explicit bk model with outperforms the previous BK
model by intergrating regional response curves

 Offering new insights into fine-scale (10m) carbon dynamics overlooked
by moderate 30m satellite products

Vv liminary!!!!
Next step: Synthesis of the different satellite approach =ry prefiminary

All forest All forest TMF Disturbed forest only
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Mapping Cecropia distribution to adjust
biomass estimates in the Amazon
[RECCAP2-CS]

Scott Barningham, UNEXE

Session 2.1: Estimates of carbon accumulation from various approaches

Sao José dos Campos, 30t Oct 2025
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Harness satellite based ECV to make a giant leap for
reducing the uncertainty on the emissions and sinks of CO2,
and CH4 over key land regions, and attributing them to
Arctic tundra and peatlands @nthropogenic and global change drivers Europe

Amazon ‘intact’

Y N

R [:]Arctrc Vegetation

S I Arctic Peatland
[ East Siberia
B Siberia logging -
(] Europe'—
[ Amazon Intact
Amazon/Cerrado Degradétion/Deforestation

Amazon ‘deforestation
and degradation’

I

T ’ T T
120°W 60°W 0° 60°E 120°E

ATV
ilsh
|PAM

Amazonia

/ C
Y GFZimecnr (i)




Existing AGB/ CH estimates

Recent advancements

Trained on LIDAR using
optical/ SAR through deep

learning

Canopy height spatial
resolutions 1-30 m

Small disturbances captured

AGB = f(CH - WD)

Inconsistent
specificity

Wagner et al. (2025)
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Wagner et al (2019)

Estimating wood density (i
o ® — " H
Via Cecropia :
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Estimating wood density and AGB

Simplified workflow

Current phase mid 2026 2027

| 9 e ecropi . U-Net | ecropi | | | representation Wood AGB
. | ) - Ip's | ! : / density | / density | |
I

Sentinel-2 : Canopy height
10 m res. Ploz:'gze :;e:&;ata estimates
2017 - 2025 ) 2017 - 2025
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Cecropia Identification
WorldView-3 data (ESA 3™ Part Mission

Objective: Cover environmental gradients across Amazonia
disturbance, climatic + edaphic
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Cecropia Identification

WV-3 Image and 20.25 km? Extraction Locations: C2.2
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Cecropia Identification
U-Net modelling
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Cecropia Identification
U-Net modelling
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Cecropia Predictions
Disturbance gradients (30m

Secondary Forest Age (MapBiomas)
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dictions

Expanding Cecropia pre
Cecropia density (Amazon)

Application across the Amazon
10 m annual maps 2017 — 2025

Train + validate NN/DL model
18 scenes of 25 km?

10 m Cecropia density
(aggregated U-Net output)

18 scenes of 25 km?
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Estimating wood density
Community composition

® Precipitation
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» Temperature :
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Estimating AGB

Final product specification and utility

 New annual 10 m wood density and
AGB maps between 2017-2025

Consistent
specificity

* [nsight into community composition
at ecosystem scale

» Successional dynamics from
disturbance explicitly incorporated
Into earth observation C stocks
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Thank you for listening!
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Fire triples the recovery time of carbon
stocks Iin easter Amazonian secondary

forests

lsadora Haddad

Session 2.1 (Part 2): Estimates of carbon accumulation from various approaches

Sao José dos Campos, 30 Oct 2025
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Landscape Analysis of Brazilian Forest
Regeneration: A Novel National
Database of Secondary Vegetation

Débora Giancola
Session 2.2: Other metrics for identifying secondary forest success.

Sao José dos Campos, 30 Oct 2025
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Objectives

National Vegetation
Recovery Plan

Recover of 12 million hectares of

@ native vegetation by 2030
PLANO NACIONAL DE

RECUPERAGAO DA
VEGETAGAO NATIVA

Rota estratégica para recuperagao

Kunming-Montreal Global
s 203 Biodiversity Framework

Commitment at COP15 to restore at least 30% of

degraded areas of terrestrial, inland, coastal and 2020 UN BIODIVERSITY CONFERENCE

COP15-CP/MOP10-NP/MOP4

Ecological Civilization-Building a Shared Future for All Life on Earth

marine ecosystems KUNMING - MONTREAL
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Objectives

National Vegetation Recovery Plan

:@] PLANAVEG Guidelines:

(Ill) ...consolidation of spatial intelligence and a monitoring system
STRATEGIES

that qualifies decision-making processes and publicizes progress in

PATIAL L : : : o
PEE,%?J‘{:ETTJN ,NT‘ZLL,GENCE achieving the goal and the final impacts resulting from monitoring

CHAIN AND MONITORING

these goals.

RESEARCH,

RECOVERY DEVELOPMENT

FINANCING

AND INNOVATION
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Objectives

National Vegetation Recovery Plan

PLANAVEG Guidelines:
S |

STRATEGIES

RECOVERY SPATIAL
PRODUCTION INTELLIGENCE

CHAIN AND MONITORING

(Ill) ...consolidation of spatial intelligence and a monitoring system

that qualifies decision-making processes and publicizes progress in

achieving the goal and the final impacts resulting from monitoring

these goals.

RESEARCH,
DEVELOPMENT
AND INNOVATION

RECOVERY
FINANCING
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IPAM
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Objectives

National Vegetation Recovery Plan

PLANAVEG

To improve the understanding of the dynamics of SV areas in

Brazil

STRATEGIES .
 Persistence

RECOVERY SPATIAL ..
PRODUCTION INTELLIGENCE  Connectivity

CHAIN AND MONITORING
« Land tenure category

RESEARCH,
DEVELOPMENT
AND INNOVATION

RECOVERY
FINANCING

AR
illsh
IPAM

I
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Secondary Vegetation
Definitions

“Areas that have been
deforested and are in an
advanced stage of
regeneration, with the
presence of trees and shrubs.”

Secondary Vegetatio
DenS|ty in Brazil

Ith

Low

(] Biome Limit
Federative Units

0 250 500 km
L I
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Data Source
Data base for qualification

Amazon
2008 2022

 Mapped each 2 years

Helmholtz Centre
for Geosciences
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Data Source
Data base for gualification

Amazon
2008 2022
Cerrado
2018 2024
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'9// G FZ Helmholtz Centre
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Data Source
Data base for qualification

A FUNCATE
Fundacéao de Ciéncia, Aplicacoes
e Tecnologia Espaciais

Atlantic Forest, Caatinga, Pantanal ‘g)
and Pampa

2018 2022

Yy GEZ emozcene
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Data Source
Land Tenure

* Indigenous Land
* Integral Protection Conservation Units

« Sustainable Use Conservation Units (excluding APA):
« Quilombola Territories

» Rural Settlements

 Environmental Protection Areas (APA)

* Private Properties FUNAI, ICMBio and INCRA
« Undesignated Public Forests

« Areas without Land Registration

h“\

IPAM @ CSa
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Landscape Ecology
Methodology

Landscape Metrics:

« Area (ha)

« Core area (ha)-30,60,90e120m

* Fractal dimension index

« Euclidean distance to the nearest neighbor (m)

« Type of nearest neighboring vegetation

h"\
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Landscape Ecology
Methodology

Landscape Metrics:

« Weighted age (years)

» Area (ha)

« Core area (ha)-30,60,90e 120 m + Area (ha) of the fragment
» Fractal dimension index according to land tenure
» Euclidean distance to the nearest neighbor (m) parcels in the region

« Type of nearest neighboring vegetation

h“\

il @esa
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Area (ha)

Total area
Amazon Na
Cerrado Na
Atlantic Forest Na
Caatinga Na
Pantanal Na
Pampa Na
0% 20% 40% 60% 80% 100%
2 —| 5
5 —| 20
=20 —| 50
=50 —| 100
=100 —| 1000
m> 1000
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Area (ha)

Total area
Amazon Na
Cerrado Na
Atlantic Forest Na
Caatinga Na
Pantanal Na
Pampa Na
0% 20% 40% 60% 80% 100%
2 —| 5
5 —| 20
m20—| 50 .
' 29 5M ha of sv Brazil
=50 —| 100 !
=100 —| 1000
m> 1000
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Area (ha)

Total area

Amazon
Cerrado
Atlantic Forest
Caatinga
Pantanal

Pampa

0% 20% 40% 60% 80% 100%

5 —| 20

5—20 > ~30-40%

Yy GEZ emozcene
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Area (ha)

Total area

Amazon I

Cerrado

Atlantic Forest

Caatinga
Pantanal I
Pampa
0% 20% 40% 60% 80% 100%

100 —| 1000 - ~ 30 - 40%

=100 —| 1000
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Core area (ha)
Results by edge distance

16,2M 15 2M

WIZM

10,000,000 7. 4M

M
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Core area (ha)

10,000,000 Loss along edge
distance
o
= 1,6M
© 1,000,000 Ut ol
% 942K -62% e
O “
0 608K o
@) J_‘_;'_J—LT / 77777
° R Ve
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vl LD
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1,000,000

100,000
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Core area (ha)
Loss along edge
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Core area (ha)

12,2M 75%
10,000,000 ¢ Proportion by biome

4 3M 579,
’5 (0]
= 2 AM 59%
S 1,000,000 o
© e L
o 38% e
S 608K -
O Pow B

o9k 84% (f—f 1‘1 \ rf"“r -
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Fractal dimension index

Results
118
Amazon e
Cerrado s
Atlantic Forest
Caatinga
Pantanal .
Pampa
0% 50% 100%
1—| 1,25
=1,25—|1,5
m15—|1,75
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Distance to the nearest neighbor (m)

Results
Amazon I |
Cerrado - e
Atlantic Forest e Q
Caatinga - . >
Pantanal I f id
Pampa .
0% 20% 40% 60% 80% 100%
0—|30m
30 —| 60 m
60 —| 90 m
mO0—[120m
®120 —| 500 m
m>500m
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Distance to the nearest neighbor (m)

Results
Amazon [
Cerrado ]

Atlantic Forest I o
Caatinga e >
Pantanal R % @

1
Pampa N
0% 20% 40% 60% 80% 100%
0—|30m
0
~ 35% of the area
®120 —| 500 m
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Type of nearest neighboring vegetation

Results
Amazon
Cerrado
Atlantic Forest
Caatinga
Pantanal
Pampa

70% 75% 80% 85% 90% 95%  100%

® Primary Vegetation

Secondary Vegetation
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Land Tenure
Results

Amazon

Cerrado

Atlantic Forest

Caatinga ]
Pantanal B
Pampa O
0% 10% 20% 30% 40% 90% 60% 70% 80% 90% 100%
® Area without Land Registration ®m Undesignated Public Forests
Private Properties APA
® Rural Settlements ® Quilombola Territories
Indigenous Land Integral Protection UC

UC Sustainable Use (excluding APA)
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Land Tenure
Results

Amazon

Cerrado

Atlantic Forest

Caatinga
Pantanal [,
Pampa
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
® Area without Land Registration Undesignated Public Forests
© Private Properties APA
Rural Settlements Quilombola Territories
Indigenous Land Integral Protection UC

UC Sustainable Use (excluding APA)
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Land Tenure
Results

Amazon
Cerrado
Atlantic Forest

Caatinga e

Pantanal

Pampa

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

APA
® Rural Settlements

Integral Protection UC
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Amazon
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Atlantic Forest
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Thank youl!

Obrigadal
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Forest regeneration and the climate
regulation ecosystem service in the
Amazon

Lais Oliveira
Session 2.2: Other metrics for identifying secondary forest success

Sao José dos Campos, 30 Oct 2025
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Contextualization
Biogeochemical and biogeophysical process

| . Greenhouse gases
Biogeochemical = aAerosols

Pollutants
LULC -
changes -
. . Heat fluxes
Biogeophysical = \water fluxes
Wind (direction and magnitude)
I LULC Climate stability
changes I Process Ability of forests to regulate climate

V«“\
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Contextualization
Climate regulation - Energy and water balance

 Different Land covers - different fluxes

Average value energy flux changes from March to May

* Soybean and Pastures:

l Moisture and latent heat

I Sensible heat

Forests

Moisture* Sensible heat Latent heat
-75.4% +62.6% -77%

|l 1!

uuuu

Soybean

Moisture™ Sensible heat Latentheat
-43.8% +28.8% -37.1%

! : 4

Pastures

Y

G FZ Helmholtz Centre
for Geosciences

*Vertically integrated moisture of the convective boundary layer

gk
IPAM
Amazonia

Zhang et al., (2023)

Eesa




Main question

Can secondary forests (SF) regulate local climate with the same

notential as primary forests (PF)?

Zhang et al., (2023)

Yy GEZ emozcene

Moisture* Sensible heat Latent heat| Moisture™ Sensible heat Latent heat
-75.4% +62.6% -77% -43.8% +28.8% -37.1% @
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Different patterns

Land use change

Study area

30°W 64°W 48°W 32°W

Bioclimatic regions I
. () AR Pacific| W
_ ; Ocean
. -0
] - Atlantic
_ : Ocean |
: -10S
- #—205 Bl Regions Brazil
RAEER R LR R .
80W 70W 60W 50W Central Brazilian Amazon (CBA)

Pires & Costa (2013)
Remains in forest bioclimatic equilibrium

Eastern Brazilian Amazon(EBA)

So91 o0

SoCE

Tendency to bioclimatic seasonalization Southern Brazilian Amazon (SBA)

Bioclimatic savannization
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What we are developing

Analysis Variables
Descriptive Inferencial Precipitation
l 1 Evapotranspiration
Understand Test the Land surface temperature
the behavior consistency and X
of observed significance of
data empirically Fracional forest cover
observed | Y | Early
relationships Primary  Secondary { Intermediary
Advanced

Yy GEZ emozcee
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Our discovers
Observed data - Precipitation

CBA EBA SBA

(] (8}
" W e
@ E SF early
- SF intermediate

‘ SF advanced

2750+

ion (mm)
\) [\]
Do (@3]
(@] (an]
() o

-

precipi
S
3

Average annual accumulated
tat

1750 ~

1500 A
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|PAM

Amazonia

Y GFZ o cene




Our discovers
Observed data - Precipitation

T « Precipitation in Is lower than in PF
Y  Precipitation in SF intermediary is lower than in
e el PF in some forest fractional cover ranges
« Precipitation in SF advanced not statistically
different of PF

N
O}
)
(@)
1

N
N
9]
o

precipitation (mm)
=
S

The ability of SF to regulate climate like

Average annual accumulated

B e PF increases with both fractional cover
oreary and successional stage advancement

. SF intermediate
. SF advanced

@)
1750' [>)

1500 A
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Our discovers
Observed data - Precipitation

EBA

* Precipitation In and SF

2750- intermediary is lower than in PF in all forest
fractional cover ranges

 Precipitation in SF advanced not statistically
different of PF in same ranges

N
192}
S
o
1

N
N
(€} ]
o

precipitation (mm)
S
S

Even in the intermediary stage, SF still

Average annual accumulated

1750- O B e cannot reach the climate regulation
O oreary potential of PF

' SF intermediate
. SF advanced

1500 -

O W O © D O OO O
NS . Qf\ PN / Helmholtz Centre
SR R R RS :
J for Geosciences
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Our discovers
Observed data - Precipitation

SBA

2750 A

« Regardless of the successional stage of SF
and fractional forest cover range,
precipitation in the SF is statistically lower
than in the PF.

N N
N 198}
93] )
o (@)

1

precipitation (mm)
=
S

SF still cannot reach the climate

Average annual accumulated

Bl rr . .
S SF early regulation potential of PF

. SF intermediate
. SF advanced

1750

1500 A

llllllllll
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SynCER

Concluding remarks

We adopted simple approaches to explore how climate responds to
forest cover and successional stage.

These methods are a first step toward understand processes that are
still not well known in the Amazon.

Results show that secondary forests help regulate climate, but their
potential is not yet fully recovered.

There is still much to learn about how forest regeneration affects local
and regional climate.

Future studies should improve and expand these approaches to better
capture the complexity of climate—forest interactions.

V«“\

IPAM @ CSa

aaaaaa

/7 C
Yy GEZ omocene (4

10



For reflection

There has never been a more urgent
need to revive damaged
ecosystems than now.

/7 Helmholtz C
Y GEZemrozcenme (v

UNITED NATIONS DECADE ON

ECOSYSTEM
RESTORATION

2021-2030




Thank you for your attention!

lais.rosa@ufv.br
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Jet Propulsion Laboratory
California Institute of Technology
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Jpl? NISAR Ecosystem Science — 11€€S

California Institute of Technology

Agriculture




- | = “. CTrees

Jet Propulsion Laboratory ]
California Institute of Technology NISAR Ecosystem SCIence

Biomass: Annually map aboveground woody vegetation biomass at the hectare scale. Accuracy shall be
within 20 Mg/ha for 80% of areas of biomass less than 100 Mg/ha.

Disturbance: Map global areas of vegetation disturbance at 1 ha resolution annually for areas losing at

least 50% canopy cover with a classification accuracy of 80%
Map crop area at 1 ha resolution every 3 months with a classification accuracy of 80%.

Agriculture:

Inundation: Map inundation extent within inland and coastal wetlands areas at a resolution of 1
hectare every 12 days with a classification accuracy of 80%.

Dense-time series of dual-polarized L-band & S-band data

NISAR observations

12 days Initiation & - Middle-aged - Mature Forests
I I l l I I I I I I I l l I I Young Forests . Forests | High storage
Low storage ' Medium storage ' Low sequestration
':o_' Low sequestration : Maximum sequestration 1 " ’
-] \ il 9.
Growth Stages over 3-4 months l - | !
g 1 y u
‘ AL y ™ »,- <5
= ‘ s | T o
= L= s % SRS
K ) 5 i N o™ :
= @ g \ AT o g . >
© Q - 4 L S e
% > " : i\ T P .
a0 o S S ST wl < e e -
c obs - oS ‘ g £ ®
= 3 Lk Yy :
E 5 =4 ¥ > B
S Vl 4B |
g \Av‘ - e I
. . A | . | §
AN R 3 N //4‘\\\ A\ (oS W0 A L N i N 7

Growth Stage Early Leaf Tillering Stem Elongation Heading to Maturation (30-100) (100:500:)

Forest Age (years)
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Ly g e o S L-band SAR Sensitivity to Biomass &
-12 I | | |
X
e}
Z
[
3
% \
B o | |
> High Priority Fusion Region
= Lower to no sensitivity of
(D) ¢ Mbam Djarem, Cameroon d
9 + Barro Colorado, Panama radar
2 s X 3 . .
< a m Pearl River, Louisiana Domain Of data fu5|on and
% x LaSelva, Costa Rica synergism with GEDI and
-24 | | | |
0 100 200 300 400 500 BIOMASS

Aboveground Biomass (Mg/ha)
Biomass < 150 Mg/ha

Low Priority Fusion Region
Higher sensitivity of radar
Domain of NISAR Performance

Global Biomass Product must be derived from Fusion Approach
For low biomass density (150 Mg/ha) radar sensitivity is high but impacted by structure & environment
For high biomass density ( >150 Mg/ha) data fusion with GEDI and/or BIOMASS required



Trees, Forests, Time, Space, Scale

-~ ExpectedBiomass
Change

Recovery from .
Nigtuchanan Carbon disturbance recovery

Carbon Source dynamics are non-linear as the
all-aged successional patches
become desynchronized to
produce the mixed-aged mature-
forest mosaic.

Biomass

O

Lo

Mature forest is a mosaic.

Time —

Successional patches
recovering from
disturbance
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(a)

Biomass

Ve
NV
A

5'°r i
%o 160 200 300 ac0| 500
+ Time (years) .
Small-Scale Dynamics
# Time —
_ 1 (p) |l. Death on some plots balances
Large Scale Dynamlcs growth on other plots |V, Death on some plots balances

growth on other plots

The non-equilibrium dynamics cause forest behave differenﬂM
area from expected landscape scale. (Shugart & Saatchi, 2011)

Biomass

[ll. Death loss greater than death gains in biomass

. All plots increasing biomass

Time —

KDP-B DPMC 2-164




Scale of Disturbance & Recovery
Shugart, Saatchi, Hall, 2010

Forest Biomass Dynamics Can be Studied at two scale:

At a large scale: a forest stand seeks an equilibrium state with a

particular mean configuration. This state once attained remains the same, thereafter.

At a small scale (the so-called the gap scale): the forest ecosystem never reaches an equilibrium state
and is continuously undergoing changes driven by the presence of large trees.

Doesn’t touch Converges to

the average the Average
2 r 2 =
1 b 1 |-
Year 50 v 50\
ear

Ho | O 5 =
a o

-1 = -1

2 b o -2 | Equilibrium at

Non-Equilibrium at Large Scale
4  Smal] Scale | : , By 1 . | : 1 :
3 -2 - 0 1 2 3 3 -2 ~1 0 1 2 3
PCI PCI

KDP-B DPMC 2-165
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Global Forest Growth Rate
Iifoniinlsbonty . 1-ha spatial resolution
Llu et al. 2025
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Importance of Secondary Forests

Jet Propulsion Laboratory
California Institute of Technology

- Tropical secondary forests (SF) in 2020

- Areas of SF < 100 years: 240 Mha

. Areas of SF < 20 years: 155 Mha

- Average Carbon Gain (2010-2020): ~400 MtCO,e yr?
- Allowing SF grow by 2050: 1.5 GtCO,e yr?

- The same amount of carbon from ARR requires: ~340 M ha of new tree planting in next 5 years

20.0 - . :
j Tropical Rainforests
; Average Age of SF <10 yrs
2 150
e = ‘
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L E
E £ 10.0" \
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O ON - Robinson et al. 2025
8 O 50 i Liu et al. 2025 (unpublished)
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@ JPL Drivers of Secondary Forests:
alinoride Instinaterof Teohnaiony Cu Itu r e’ M 3 r.k Et, PO|| CY

Secondary forests (SF) are part of the global land use activities.
SF short-term and long-term carbon sequestration capacity

depend strongly on local, national and international policy and
market forces




JPL Global Monitoring of =
Rt s Vegetation Disturbance and Recovery “ Clrees

Cross-pol measurement is key to
detecting structural differences in
vegetation, driving requirement for

multi-pol baseline and cross-pol
threshold radar capabilit
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acquisitions with both
polarization and incident
angle variations; both
critical for effective
disturbance monitoring.

Time (Year)

NISAR would quantify fluxes in

terrestrial sources and sinks of
carbon resulting from disturbance




SPL SAR Geometry and Temporal Effects N‘VI CTlrees

Jet Propulsion Laboratory
California Institute of Technology

SAR Observation Geometry SAR Pixel vs Lidar and Ground Pixel

—_— Lidar footprint (~L/2 radius)
- V_ = Volume: L2HT/4
| A T: Gaussian volume factor

Radar Resolution (~L x L)
Vg = Volume: L?H/sin®

Ground Plot Area (~Lx L)
V¢ = Volume: L?H
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of a Pixel \ A

Ground Range Pixel 57
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Jet Propulsion Laboratory
California Institute of Technology

NISAR Algorithm Performance
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SRP0

Jet Propulsion Laboratory
California Institute of Technology

Radar Stocking Index Captures Growth of Tree Plantation

. Direct biomass and Radar-based Stocking Index can be
used for dynamic baselining
» Estimate of additionality & tracking carbon credit available

5 at 6-12 months after tree planting
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SRP0

Jet Propulsion Laboratory
California Institute of Technology

- CTrees

Agriculture Frontier in the State of Tocantins, Brazil (7.019 S, 49.072 W
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Jet Propulsion Laboratory

California Institute of Technology

CTrees

NISAR Backscatter (mu2/m?)
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Jet Propulsion Laboratory
California Institute of Technology
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S . CTrees

sot Propuision Laborstory Global Vegetation Aboveground Biomass

California Institute of Technology

> 100 Mg/ha

<20 Mg/ha < 100 Mg/ha




CTrees

Global Vegetation Biomass Dynamic

Jet Propulsion Laboratory
California Institute of Technology

STD of Biomass (2000-2024)
10 km Grid Cell
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Summary

NISAR will provide the first fore ;f'try dedicated global observations

SRR logaeson e mot d,f;f,“a'mic components of global forests

(A TRUE GEDI Satellite: Glob i‘_"ECosystem.Dynamic Investigation)
Monitoring changes of forestJ .cover from dlsturbance (fire,
hurricane, insects, droughts)

Monitoring recovery of foresg af;_er disturbance and land use

Monitoring forest health and: pr’ductivity by providing habitat

structure, changes of canop w*r content monitoring soil
moisture changes and drou ht stress i

i Google Earth
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Session 2.1 (Part 2): Estimates of carbon
accumulation from various approaches

SynCER: Synthesising post-disturbance Carbon Emissions and Removals
across Brazil's forest biomes

Sao José dos Campos, 30 Oct 2025
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Session 2.2: Other metrics for

identifying secondary forest success
(eg. biodiversity, landscape metrics, permanence)

Sao José dos Campos, 30 Oct 2025
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Catarina Jakovac

Patterns and Drivers of
Vegetation Structure
in Amazonian Secondary Forests

20th June 2025
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Continental scale = Environmental conditions

Regional scale = Environ +
LULC

Site availability to
succession

(... Depersalimtaton _ ;

. On-sttedispersal

. Propaguleresistance Species availability

... Nutrentcycing
Species establishment and g
Facilitation by remnants performance %

ol

Jakovac et al 2021, Land use effects on secondary succession
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Environmental con o
anthropogenic factors
vary across space

d

of disturbances: ﬁrc and dctorcstatlon (Fig. 3). .ur analysis shows\
distinct regrowth regimes emerging in these four heterogeneous
chmate reglons (Flg. 3), with negowth in some regions condi-
d larg tural, environmental drivers, and others by
bance drivers (Fig. 2b-¢). In the North-

.South-West & Central region
-South-_East & North region

|||IIE

Drier (more seasonal) regions were more affected by

(g}

anthropogenic drivers. Why?

¢ ? less resilient to anthropogenic impacts

** ? higher fire and deforestation frequency (broader

Average Ranking
Least important - Most important
<N

gradiente = stronger effect)

RE0EC|eE| BECEuleE| BECEole s BEOECfRE & ? lower f in the land due to |
FEZEQE S| FEESQE S| RE5S3|c s PEESQE S s ? lower forest cover in the landscape due to longer
$§=2 8l £8=3 5| 8823 2l 883 2 2
s 8 | s|les 8 | gles B | 8lez B | s
% « | g|l"8 « | g|"3 & | 8 "% « | 3 LU lead to lower regrowth rates

Drivers

Heinrich et al 2021, Large carbon sink potential of SF
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iInteract?

Hypothesis: Wetter regions are more
strongly affected by anthropogenic
impacts than drier regions, because

species did not evolve with fire.

s e

1-

Cropping period
(swidden)

2 yar o

/“ How environmental and land use drivers

Fallow period
(secondary forest)
5->30 years

Slash and burn
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How environmental and land use drivers
interact?

4
7
o

Climatic gradient Land use gradients
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Same-aged Young SF: 4-8 yrs old FARMER INTERVIEWS * |
1- 2 years
n= 88 forest inventory plots « #slash and burn events i e ‘
« Date OGF was cut Slash and burn

« Age of SF
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Vegetation structure

» Increase wood density
» No interaction effects of site * LU
¢ Change in species composition to more conservative species and reduced dominance by
“classic pioneer species”

0.8 " R?=0.28
o
o

0.7
D -
< site_cod
g 06 @ jurua_Natalia Shortdry Season
g ® Tapajos_reflor Long dry Season
= & tefe Catarina Vet
=05 tefe Natalia  Wet
O

0.4

o
0 4] 10 15

n= 55 plots Use.duration

189
Jakovac, Giles et al in prep.
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Vegetation structure

» Change in wood density is related to changes in species composition

Shift species composition

GAM — Densidade relativa — Nao comuns — Espécie: Cecr_Scia GAM — Densidade relativa — Nao comuns — Espécie: Guat_Disc
Ciclos (¥ ) Ciclos {1r )
grof o 2 -
o
8 g
g $ .
S 2
o 2, A
w4 [ 3 a
s &
) « > H
of % >
0.0 T . T
q ] :f 4 0
Ciclos Ciclos

Regrowth rate

-_—
Duration/frequency of previous land use

190
Jakovac, Giles et al in prep.
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Vegetation structure

» Decrease basal area
> Decrease AGB
> No interaction effect of site * LU

Basal area (m2/ha) AGB (Mg/ha)

30 e 150 ® site_cod

Short dry Season

Long dry Season
Tapajos_reflor

=o= jurua_Natalia

—-—
=o= tefe Catarina
——

(v
.c|20 tefe_Natalia Wet
(9]
E|
<
m|
°
o 10

0

0 5 10 15 0 5 10 15
Use.duration Use.duration
N = 88 plots
191

Jakovac, Giles et al in prep.



y

How environmental and land use drivers
interact?

« Higher duration of land use (and frequency of
deforestation) reduces AGB recovery

« The effect size of land use is similar across climatic
regions (preliminary)

« Reduction in AGB is driven by basal area and height
more than by wood density

« Vegetation diversity...



Retrieving land-use history (interviews x RS)

LULC classification along landsat time series - CMAP

Pixel identifier

Jurua
o
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e 10
ro S
= J
0
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; 0

® Old—growth forest
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® 900 00060 o o
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Difference in #cycles
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i
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Secondary forest Managedarea @ Not observed I Field campaign

2000 2010 2020
Year

Comparison with local landowner interviews
shows CMAP effectively estimates:

# cycles: mean diff -0.8 + 1.9 cycles (55% of
samples within 1 cycle)

SF age: 0.4 + 3.0 years (93% of samples within 3
years for age)

(n = 88 samples)

Reis, Escada, Giles,...,, Jakovac et al in press

0.4 -

-0.2

Breakpoint detection

2 4 | al » ".“' :
e A ,‘/

1 /
| ;',
| :/
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lv/ 1

|
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| e Mean diff of -0.23 cycles;

. No strong systematic error of
5 . over-or underestimation

Fig. 6. Scatter plot of predicted number of cultivation cycles against information

reported by farmers.

2 3
Referenca number of cycles

Dutrieux, Jakovac et al i%%



Proxies for Land-use history

« Hdeforestation events since OGF deforestation

- Land use duration = total time in agric/pasture use

since deforestation

« Year of OGF deforestation (e.g. PRODES)

LU duration (yrs)

Year of
deforestation of
OGF

Jakovac, Giles et al in prep.

15~

#defor events

Comr: 0.619***

2010~

2000 -
1990 -
1980 -

25 50 75 10.0 0

LU duration

194



Retrieving land-use history

Limitations

6 months cassava field

Reis, Escada, Giles,...,, Jakovac et al in press 195
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Proxies for Land-use history

Buffer 500m Buffer 1000m Buffer 1500m Buffer 4000m
#Hdeforestation 100-# 1 Corr: -0.568** ® - Comr -0 487** : Corr: -0.376* ". Corr: -0.135
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events '. g .... ™ g ®e .09 .o @ =
50- o @ oo® o @ D68 ;:
zs_N ?&\' o0 @ - .44 ..“ Py
®o N“Q = ooooo“- e®0 -... noo.:..o 4
) 15 = o Corr: -0.469*** o ® Corr: -0.369** - e Comr: -0.281* .. Cormr- -0.147
LU duration (yrs) l °, °y %
10 = e ‘ < o ‘o.'oo " )
y. °0 ?'. = o:* . .'. -, &
Year of 2010~ P © v e o S ° o8 . -
2 o @ ° 5]
deforestation of 2000 - = '" ° %o - &
OGF 1990-@

s - o~ @
] 980-.. %) Corr: 0_594*** R EED Corr 0.653***

0 25 50 75 100 0 25 50 75 1000

L&

Corr: 0.659***

S 8
) .
= (CoIT: 0.561
25 50 75 100 25 50 75
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Simple ecological indicators benchmark
regeneration success of Amazonian
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Session 2.2: Other metrics for identifying secondary
forest success
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Regeneration Success
Ecological Integrity

Low limitation to successional
trajectories
1.High landscape
Integrity
(Forest cover/Species availability)
2. Low Intensity
previous land-use e s eion
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Regeneration Success
Ecological Integrity

Mature reference natural range of variation of El

£

E Diversity

% Forest

[

& structure
Functioning

Time Sample illustration
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NR Amazonia

- secondary forest

1. The drivers of forest .
regeneration in the Amazon S TR

1. Set ecological indicators to
evaluate regeneration success
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Methods

Data compilation

o 448 SFs p|OtS { _ Land cover

. ; ’ ‘ >
o 24 sites , St \\ Old-growth forest
b o S i 7 Non-forest native

o 150 000 trees P e W G o B2~ ecosystems

Bl Converted lands
>5cm DAP B Water bodies

W Secondary forest

o 5-7/0years
o 88% < 30 years S U ‘
>000 mm ano-t A 0  250.000 SO0.000rr; ¥ S
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SynCER




Methods

Biomass

AR Basal area

SH
Stem density

el BI9®) Species Richness
(Sp 100 ind.)
Species Diversity
V«'R
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Biomass

ANV Basal area

SH
Stem density

COMPOSICAO

Species Richness
(Sp 100 ind.)
Species Diversity
(Hill 1)

SynCER

'9// G FZ Helmholtz Centre (-
//ﬁ for Geosciences

Methods

Climate (CHELSA)
CWD, temperature, seasonality

Soils (SoilGrids & Zuquim et al. 2023)
pH, base saturation, CEC, and bulk
density

Anthropogenic impacts (MapBiomas)
_and-use duration

-orest cover

Deforestation frequency

-ire frequency
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Drivers of Forest Regeneration

Structure

St Max. | |
de:sl?t\- DBH basal syen SH Species Species AGB

A a . . 2 1
m2.ha-" index Richness diversity m=2.ha-

- cam
stems.ha N.Spp. ind-*  Hill1

Sucessional age
(y)
pralue  sxx * %k ¥ ¥ * %% ¥ x¥x% %k ok

ARtioaeaat Local land use
_lmpacts duration
p-value #%% sk % k%
Local
deforestation @ ‘ D . ‘ ®
frequency palue k¥ * % % # * % %% #
Soil clay fraction @ ] T
p-value *E¥ F & *
Soil bulk density ' ‘ ‘ @
p-value %k % * %% * * %%

R2 0.20 0.42 0.34 0.30 0.36 0.33 0.34



Setting Reference Values

El= Age + Soil + Previous land-use + Error

=

Deforestation Frequency (<1
Deforest.) A e | @

AN

d
1

10 20
buffer_300_land.duration

R?=0.74, p<0.001

Land-use Duration (<8 years) s




Setting reference values

D) Species Richness

W
o
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N
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Species (N° Sp. 100 ind.'1)
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Forest age
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Setting reference values
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. Setting reference values
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Implications

e We identify the main drivers of Amazon forest regeneration and
provide reference values for ecological integrity across successional
stages and regions.

e These reference values guide restoration outcomes, reduce policy
uncertainties, and support the effective implementation of public
policies
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Next steps

o [dentify these indicators and reference values using remote sensing
tools (Ecological Integrity from remote sensing)

e Increase the predictive capacity from early-years and across
successional trajectories (SF Permanence).

e Integrate field and remote sensing data
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Monitoring carbon and biodiversity during
natural regeneration: contributions from
Sustainable Amazon Network (RAS)

Rodrigo Nascimento

Session 2.2: Other metrics for identifying secondary forest success.

Sao José dos Campos, 30 Oct 2025
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RAS

Aims, distribution, and contributions

« Multidisciplinary network founded in 2009
» >400 plots data Joice Ferreira Jos Barlow
» Biodiversity groups ' '
* Trees, lianas and palms (small and large)
* Birds
 Dung beetles
« Soil conditions (macro, micronutrients, and

Co-founders

: : PHILOSOPHICAL ' '
texture) and microclimate PHILOSOPHICAL A sodial and ecological assessment of
: , . —or—T) tropical land uses at multiple scales:
* Integration between ecological and social THE ROYAL <)~ the Sustainable Amazon Network
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Sampling methods
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Some key messages about carbon estimates
from field data
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Disturbances significantly impact forest
carbon stocks

Paragominas Santarém Even highly degraded primary
(a) 400 400
s & F B g @ B B4 forests store more carbon than
9 < s0f 2 300 F secondary forests
o o T T
o o
c O %
a = 200} T 200 F
o C
© O - % °
> © » o Secondary forests stock ~ 75
g 8 100 ]L 100 l
T and 67% less carbon
0 0 L— - - 3 respectively than primary
UF LF LBF SF UF LF BF LBF SF
Berenguer et al., 2014 GCB forests.
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Furthermore, small individuals are very
Important in the initial carbon stocks
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arbon accumulation varies greatly between
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Hyperdominance of carbon and abundance in

secondary forests - ~ 5% of spp.
~ 9% occur in all regions and successional stages

a)
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Biodiversity grows alongside carbon

Disturbance class

Undisturbed Logged Logged and burnt  Secondary
Large stems Small stems Birds Dung beetles

20-a 1b de 1d

Relative richness

Carbon (Mg ha™") Carbon (Mg ha™") Carbon (Mg ha™") Carbon (Mg ha™")
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SynCER: Synthesising post-disturbance
Carbon Emissions and Removals across
Brazil's forest biomes

(12:30-13:30) Lunch

Sao José dos Campos, 30 Oct 2025
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SynCER: Synthesising post-disturbance
Carbon Emissions and Removals across
Brazil's forest biomes

Workshop and breakout groups

Sao José dos Campos, 30 Oct 2025
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SynCER: Synthesising post-disturbance
Carbon Emissions and Removals across
Brazil's forest biomes

Plenary: Feedback from discussions

Sao José dos Campos, 30 Oct 2025
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